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Abstract

In this paper we present OvaExpert, an intelligent system for ovarian tumor
diagnosis. We give an overview of its features and main design assumptions.
As a theoretical framework the system uses fuzzy set theory and other soft
computing techniques. This makes it possible to handle uncertainty and incom-
pleteness of the data, which is a unique feature of the developed system. The
main advantage of OvaExpert is its modular architecture which allows seamless
extension of system capabilities. Three diagnostic modules are described, along
with examples. The first module is based on aggregation of existing prognostic
models for ovarian tumor. The second presents the novel concept of an Interval-
Valued Fuzzy Classifier which is able to operate under data incompleteness and
uncertainty. The third approach draws from cardinality theory of fuzzy sets and
IVFSs and leads to a bipolar result that supports or rejects certain diagnoses.
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imprecise and incomplete data, fuzzy methods

1. Introduction

One of the most challenging current problems in gynaecology is the cor-
rect differentiation of adnexal masses. Early identification of malignant ovarian
tumors versus benign neoplasms and functional lesions is crucial, because it
determines the necessity of surgery, the pre-operative work-up and adequate
timing in the operation room [1]. It also has great importance for determining
who should perform the surgery – a gynaecological oncologist or a general gy-
naecologist. The problem of correct and early diagnosis of this kind of tumor is
a difficult task especially for inexperienced gynaecologists [1]. Moreover, small
medical centers lack specialised equipment for advanced medical examinations.
Such deficiencies lead to problems with the collection of complete data by physi-
cians during examinations and with interpretation of the results. This, in turn,
hinders the making of a final decision.

Gynaecologists around the world have developed many prognostic models,
ultrasonographic morphological scales, and other risk of malignancy calculators
that are used for differential diagnosis of ovarian tumors. The most common
diagnostic models are based on scoring systems [2, 3] and logistic regressions
[4, 5]. Over 10 years ago, the International Ovarian Tumor Analysis (IOTA)
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Group began a project to improve the ability to differentiate between benign and
malignant ovarian tumors. Several years of comprehensive and broad studies
resulted in a number of predictive models. Among these, the most important
are the LR1 and LR2 models, based on logistic regression [6], and the most
recent IOTA model – ADNEX [7]. However, the plurality of diagnostic models
confirms their imperfections. Both the sensitivity and specificity of those models
rarely exceed 90% in external evaluation by independent research centers [8, 9].
Another limitation is that they cannot be applied when some of the patient data
is missing, which is a common problem resulting from, for example, the technical
limitations of the health care unit or high costs of medical examinations.

OvaExpert is an intelligent medical diagnosis support system for ovarian tu-
mor, intended as a solution to the problem of effective diagnosis in the presence
of low-quality (uncertain and incomplete) data. It is being developed by scien-
tists from two Polish universities: Adam Mickiewicz University in Poznan and
Poznan University of Medical Sciences. The main aim of OvaExpert is to equip
a physician with a convenient tool that makes it possible:

• to gather and manage a patient’s data in a standardized format;

• to reduce the impact of low data quality on the final diagnosis;

• to present the result in a way that gives maximum information to the
doctor.

Currently OvaExpert is in the testing phase, and its demo version is available at
the project website http://ovaexpert.pl/en to provide insight into all of the
functions of the system described below. The system is easy to use and intuitive,
yet it utilizes recent methods mainly from the areas of machine learning, soft
computing and fuzzy set theory [10].

In the following sections we describe the system in detail, focusing on its
modular architecture. We present the main features and components of OvaEx-
pert, namely the diagnostic modules, and some of their theoretical background.

2. Design of the System

The following section describes the features of OvaExpert along with its
place and role in the diagnostic process. The third part of this section contains
technical and technological details.

2.1. Features

OvaExpert is intended to integrate present knowledge about ovarian tumors
(models, scoring systems, reasoning schemes, etc.) into a single computer-based
system. It is a unique tool for many reasons. To the best of our knowledge
this is the first time that incompleteness of data has been taken into account
and incorporated into a system for ovarian tumor diagnosis in a comprehensive
manner [11]:
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• at the stage of collecting data about a patient;

• at the stage of data processing;

• and finally, at the stage of presenting the diagnosis.

We briefly introduce the principles of the system and its main elements.
The system covers four main areas: medical data acquisition, expert knowledge
gathering, decision support in the process of selecting the optimal diagnostic
path, and decision support in making a final diagnosis (see Figure 1).

Medical data 
gathering

Expert 
knowledge 
gathering

Diagnosis 
support

Diagnostic path 
recommendation

Figure 1: The main components of the OvaExpert system.

The system was created for physicians who need a comprehensive tool that
is able to offer more than support for a final diagnosis. OvaExpert assists the
gynaecologist during the whole diagnostic process, from gathering medical data
to exchanging data and experience among physicians. The following subsections
describe the features of the system which enable the technical realisation of these
objectives.

2.1.1. Uncertainty Modelling

Uncertainty has attracted increasing attention as an important problem in
health care practice and in medical publications. As noted in [12] there are
multiple meanings and varieties of uncertainty in medicine, each of them having
unique effects for diagnosis. Types of uncertainty can be distinguished according
to its nature – whether it is objective (arising from the complex or probabilistic
nature of a phenomenon), subjective (personal opinion or interpretation), or a
result of low quality of information (incompleteness).

Working under information uncertainty is an everyday experience in medical
practice, and it is impossible to eliminate it completely. However, many tools
that support gynaecologists neglect this problem and shift the responsibility for
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providing good-quality data to the doctor. A different approach is proposed in
the OvaExpert system.

OvaExpert introduces a completely new approach to the uncertainty related
to incompleteness and lack of data [10, 13]. The aim of the system is to store
and process uncertain data, so as to extract as much information as possible and
to present the resultant diagnosis still retaining information about the level of
uncertainty. For example, in addition to precise examination results, uncertain
values can also be handled. This can occur if the physician is not sure of
the result or if results are ambiguous. For example, if the tumor thickness in
ultrasound examination is between 30 and 50 mm, such values can be stored and
handled in the system. The presentation of uncertain results also depends on
the type of a given attribute. In the case of integers or decimals, the result is an
interval, whereas for boolean attributes one may indicate that both values are
possible. For attributes with a list of possible values (enums) one may indicate
several possible examination outcomes.

2.1.2. Medical Data Gathering

One of the main objectives of the OvaExpert system is to provide a sim-
ple, convenient and efficient way of collecting patient data and reaching a fi-
nal diagnosis. Currently, due to the absence of a common data format, there
are limitations in cooperation between physicians from different centers. Some
data may also be lost when converting one data format to another. To date,
data has been collected by individual doctors using traditional methods, such
as spreadsheets or notebooks, without paying sufficient attention to its quality
and format. The system, by providing standardised data schemas developed on
the basis of the recommendations of the IOTA group [14], enables the collection
of data in a common, centralised database. This has made it possible to begin
building a knowledge base of different medical cases. This database also enables
quality assessment of the diagnostic decisions taken by the system, performed by
specialists from different medical centers, and the collection of data for further
scientific research.

2.1.3. Simple and Intuitive Interface

The design of the interface was the subject of thorough consultation with
gynaecologists to meet the need for ease of use in all conditions, including on
mobile devices, especially smartphones. An example screenshot of the OvaEx-
pert interface appears in Figure 2. At any time, the attending physician can be
provided with the history and a visualisation of the patient’s diagnostic process.
During the whole process the gynaecologist is accompanied by a system that
supports him or her by identifying further examinations which may increase the
likelihood of an accurate diagnosis. Such a solution is of great assistance to
inexperienced gynaecologists, and moreover helps to avoid unnecessary exami-
nations and the associated costs.
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Figure 2: An example screenshot of the OvaExpert interface.

2.1.4. Variety of Diagnostic Models

OvaExpert is designed to provide classical diagnostic models as well as new
ones. First of all, well-known prognostic models were implemented, including
the models of the IOTA group, namely the SM scale [3], Alcazar scale (further
denoted as Alc.) [2], IOTA LR1 model [4], IOTA LR2 model [4], Timmerman
model (Tim.) [15] and Risk of Malignancy Index (RMI) [5]. Since many gy-
necologists are familiar with those methods and trust their results, OvaExpert
makes it possible to use them at any time (including their uncertaintified ver-
sions) and to compare their results. Moreover, modern diagnostic methods were
proposed and some of them were implemented, including those based on fuzzy
aggregation and interval-valued fuzzy classification. The modular architecture
of the system makes it easy to extend it with new methods in the future.
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2.1.5. Bipolar Diagnosis

OvaExpert presents the result of the diagnostic process in a bipolar man-
ner [11], giving simultaneously the possibility of diagnosis towards malignant
and towards benign, together with a degree of impossibility of determining the
nature of malignancy. Such a presentation informs the physician about the re-
liability and completeness of the diagnosis. A classical approach to the medical
diagnostic process involves identifying the most adequate diagnosis. However, it
is also possible to follow criteria that exclude certain diagnoses. It is apparent
that in case of doubts regarding the diagnosis, such a bipolar – positive and
negative – perspective is valuable and conveys more information to the doctor.

OvaExpert uses an approach based on Atanassov’s intuitionistic fuzzy sets
IF-sets) [16, 17] to model bipolarity in the diagnostic process. This concept
is innovative in medicine, its use in diagnosis having only been indicated as a
possibility [18, 19]. It is consistent with the basic premise of the OvaExpert
system, that it must be able to accept and to cope with uncertainty. The
patient’s condition is described on the one hand by a degree to which the tumor
is regarded as malignant, and on the other by a degree to which it is regarded
as benign. These two degrees need not sum to 100%, and the system may
suggest further examinations to increase the reliability and completeness of the
diagnosis.

IF-sets representation which is mathematically equivalent to Interval-Valued
Fuzzy Sets (IVFS) allows us to highlight the component of missing information.
Thanks to this approach, where the pros and cons do not necessarily add up to
1, the amount of missing data can be visualised. An IF-set E is a triple:

E = (A+, A−, A?),

where A+ is a fuzzy set of elements that belong to E , and A− is a fuzzy set
of elements that do not belong to E . This theory, in contrast with fuzzy set
theory, incorporates uncertainty about the membership of an element, as A−

is not necessarily a negation of A+, but A− ⊂ (A+)c where the complement
of fuzzy set A is defined as Ac(x) = 1 − A(x) for each x (for a generalised
definition of IF-set with a use of a complement generated by an arbitrary strong
negation see e.g. [20]). Therefore, the value A?(x) = 1−A+(x)−A−(x) reflects
uncertainty or hesitation about membership of an element x in IF-set E .

2.1.6. Expert Knowledge Gathering

OvaExpert will also enable a user to enter his or her own diagnostic rules de-
rived from personal experience. These rules take the form of IF-THEN clauses
with both numerical (e.g. based on the level of a particular blood marker) and
linguistic terms. This means that an individual specialist is able to personalise
the behaviour of the system, which may lead to expansion of the knowledge con-
tained in the system. Potentially this can lead to an increase in the effectiveness
of diagnoses. This feature is still under development.
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Figure 3: Screenshot of the OvaExpert diagnosis recommendation view.

2.2. Use of the System in the Diagnostic Process

The diagnostic process begins with a medical history entered by the doctor.
It then continues through several stages, where further medical examinations
are made. Each of these stages provides additional knowledge for the diagnostic
process (e.g. levels of blood markers, ultrasound descriptions, etc.). The process
runs iteratively. At each stage OvaExpert computes a bipolar recommendation
for diagnosis, which consists of a set of possible diagnoses for a particular type of
tumor, with an indication of how probable it is that the diagnosis is correct and
how probable that it is not (see Figure 3). On the basis of that recommendation
the doctor must decide whether to carry out further tests or to make a final
diagnosis. The system supports the selection of the optimal diagnostic path.
This is done by utilising knowledge from retrospective data (e.g. statistical
methods) as well as from fuzzy rules entered into the system by experts. The
process of interaction with the physician is illustrated in Figure 4.

2.3. Architecture

A very important aspect in the design of the software is the choice of tech-
nology. The main factors that were taken into account when designing the
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Figure 4: Diagram of interaction between a physician and OvaExpert.

OvaExpert system were stability, reliability, and usability on mobile devices. In
addition, the chosen technologies need to be up to date and in line with modern
standards of software development. We were mainly interested in open source
software supported by a large community.

OvaExpert was built with the use of modern software engineering tools and
technologies such as Java, Spring, AngularJS and PostgreSQL. The system uses
a client–server approach and is available via a web browser based on RESTful
web services. In the following, we will give more details on the chosen technolo-
gies and their role in the project.

The server is deployed on the Apache Tomcat web container, which makes it
possible to run a Java-based HTTP server. As the main framework we selected
Spring, which was used to establish the main components of the application:

• object lifecycle management and dependency injection using the Spring
IoC container;
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• RESTful web services and enforcement of Model View Controller (MVC)
design pattern using Spring MVC;

• system security using Spring Security;

• seamless integration with the database using Spring Object-Relational
Mapping (ORM).

As a database management system (DBMS) we chose the free and open source
PostgreSQL, which is known for its reliability and supports data integrity.

The client side was created using JavaScript and HTML with the use of the
AngularJS framework and Bootstrap CSS. The client and server communicate
using RESTful web services and the JSON data format. The client application
is available for recent web browsers and is optimised for different screen sizes
(desktop, tablet, phone).

In addition to the above, the OvaExpert system uses several other libraries
to implement specific features. Import from and export to other data formats
were implemented with the use of the Apache POI and OpenCSV libraries.
Internationalisation of the application was achieved with the angular-translate
library. The implementation of medical data anonymization uses the angular-
cryptography library.

An overview of the system architecture is given in Figure 5, which shows the
most important parts of the system along with the technologies used to create
them. Two components deserve special attention with regard to the further
use of the system in medical practice. Medical data anonymization enables
the convenient use of sensitive data in the system by both gynaecologists and
researchers. The diagnostic modules realise the main objective of the OvaExpert
project. Here medical data anonymization will be described from a technical
point of view. The theoretical basis of the diagnostic modules will be addressed
in the next section.

2.3.1. Medical Data Anonymization

Personal data (especially medical records) is sensitive information which is
legally protected. In order to conduct research on data collected by the system
it must be anonymized. OvaExpert has the ability to anonymize medical data
automatically in such a way that sensitive data is never sent to the server, but
doctors can still access it.

Figure 6 presents the process of medical data storage. The gynecologist en-
ters all medical data into the client application accessed via a web browser. Then
automatic anonymization occurs, the data is split into two parts and a unique
ID number is generated. Anonymized medical data is stored on the OvaEx-
pert server, while sensitive personal information is encrypted and stored locally
in the browser’s Local Storage. This solution means that sensitive informa-
tion stays on the doctor’s computer and is available only to authorized medical
unit employees. Stored sensitive information is as secure as the computer on
which it is stored. On the other hand, researchers are able to use anonymized
collected medical data to develop new diagnostic models and improve existing
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Figure 5: UML diagram showing the most important parts of the OvaExpert system.

ones. When a physician wants to retrieve data from the OvaExpert system,
sensitive information from the browser’s Local Storage is decrypted and merged
with the anonymized medical data from the server with the use of the unique
ID.
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Figure 6: Principle of operation of the proposed method of medical data anonymization.

3. Diagnostic Modules

The main advantage of the system is its modular architecture, which will
be discussed in this section. In order to provide a physician with the best
recommendation for a final diagnosis, all existing and new methods for sup-
porting the diagnosis of ovarian tumors can be integrated into the system as
modules. Currently, three top-level diagnostic modules are implemented: based
on diagnostic models, based on an Interval-Valued Fuzzy Classifier and based
on Interval-Valued Fuzzy Set Cardinality. Moreover, the system is designed so
that it is possible to add new diagnostic modules that provide a diagnosis using
techniques completely different from those currently used.

We decided not to develop new models based on classic methods of auto-
mated data classification, e.g. SVMs and Bayes classifiers. Such models have
been already studied [9] but they are not used nor recognised by the physicians
community – this is mostly caused by complexity as well as nontrivial interpre-
tation of the models. For that reason our models base on classifiers which are
acknowledged by the community and we utilise a fuzzy-driven methodology due
to its natural and approachable way of explanation.

Various decision-making modules are available only for experts who are in-
volved in the process of developing the system. OvaExpert is designed for less
experienced physicians and they will be allowed to use only one optimised deci-
sion model.

3.1. Module Based on Diagnostic Models Aggregation

The number of different diagnostic models is large (see Introduction, [21])
and it is not generally agreed which one should be used in a particular situ-
ation. Moreover, the original models were not designed to handle incomplete
data, while incompleteness is common in medical practice. Thus, the greatest
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challenge was to support a physician in making an effective final diagnosis under
incomplete information.

One of the proposed approaches is to take advantage of the diversity of
diagnostic models and to aggregate their results to benefit from synergy effects.
Our previous research has shown that fuzzy aggregation is a powerful method to
improve the quality of diagnosis as well as to minimise the impact of missing data
and uncertainty. The results of a representative instance of this approach can be
seen in Figure 7. It is based on Ordered Weighted Average aggregation (OWA,
see [22]), marked on the diagram as OEA. It achieved an efficacy exceeding
that of the individual diagnostic models, despite the missing data. More details
concerning diagnostic model aggregation, its evaluation and preliminary results
can be found in the original paper [23]. Below we will give a very simplified
example of the operation of this diagnostic module.
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0.0 0.1 0.2 0.3 0.4 0.5

Level of missing data

To
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l c
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t

Method

Original models

OEA

Figure 7: A comparison of total costs between the original diagnostic models and the selected
aggregation strategy. The shaded area indicates bounds of the total cost of the original
models. All models are evaluated on the same patient data. Section 4 gives more details
about evaluation procedure.

For simplicity, in this example we assume that the patient is described by
two attributes only, namely patient’s age and one cancer antigen test. We define
the domains of these attributes as D1 = [0, 100] and D2 = [0, 1500]. Consider
two patients pA = (pA1 , p

A
2 ) = (35, 100) and pB = (pB1 , p

B
2 ) = (60, 1200). Let

m1 be a simple example diagnostic model defined by

m1(p) = 0.0025p1 + 0.0005p2 , (1)

which gives results in [0, 1], where values above 0.5 indicate a diagnosis towards
malignancy. Now we can easily see that according to diagnostic model m1

patient A should be diagnosed as benign (m1(pA) = 0.138) and patient B as
malignant (m1(pB) = 0.75).
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Now suppose that some patients’ values are missing: pA = (35,NA) and
pB = (NA, 1200). In our approach we define a new interval representation of
patients

p̂A =(p̂A1 , p̂
A
2 ) = ([35, 35], [0, 1500]) (2)

p̂B =(p̂B1 , p̂
B
2 ) = ([0, 100], [1200, 1200]) (3)

and compute diagnoses from uncertaintified models using the following formula

m̂(p̂) = {m(p) : p is such that ∀1≤i≤n pi ∈ p̂i} . (4)

This results in

m̂1(p̂A) =
{
m1(pA1 , p

A
2 ) : pA1 = 35, pA2 ∈ [0, 1500]

}
= [0.088, 0.838] (5)

and, analogously, m̂1(p̂B) = [0.6, 0.85]. It is easy to see that for the first patient
it is hard to make a diagnosis, while for the second, despite the missing data,
we can still say with high confidence that she has a malignant tumor.

To illustrate the next step, aggregation, let us assume that there is a new
blood marker (D3 = [0, 100]) and it is used in a new diagnostic model

m2(p) = 0.0025p1 + 0.0075p3 . (6)

New marker results were assessed for both patients with the following results:
p̂A = (35, NA, 5) and p̂B = (NA, 1200, 90). The new diagnostic model (after
uncertaintification) yields m̂2(p̂A) = [0.125, 0.125] and m̂2(p̂B) = [0.675, 0.925].

Having two different pieces of information, we can try to merge them into
one that is more reliable. What we know about the first patient is that the
diagnostic models yielded [0.088, 0.838] and [0.125, 0.125] as suggested diagnoses.
The simplest and naive method of aggregation uses the mean calculated by
interval arithmetic. Calculation gives the following results:

ˆAgg
(
m̂1(p̂A), m̂2(p̂A)

)
=

[
0.088 + 0.125

2
,

0.838 + 0.125

2

]
= [0.107, 0.482] (7)

and

ˆAgg
(
m̂1(p̂B), m̂2(p̂B)

)
=

[
0.6 + 0.675

2
,

0.85 + 0.925

2

]
= [0.638, 0.888] . (8)

In this simple example, thanks to the use of aggregation we have obtained new
diagnoses which are less uncertain and make it easier to take a final decision.

3.2. Module Based on an Interval-Valued Fuzzy Classifier

The next diagnostic module implements the novel concept of an Interval-
Valued Fuzzy Classifier based on an uncertainty-aware similarity measure [24].
The main idea is to preserve full information – including the uncertainty factor
– about the data during the classification process. The classifier is designed to
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deal with situations in which both the classified objects as well as the classes
themselves are imprecise, subjective and/or incomplete. In such cases, the re-
sulting classification will also be imprecise or incomplete.

There are two ways to divide patients into classes. A basic, binary, classifica-
tion discriminates two kinds of tumor: malignant and benign. A multi-class clas-
sification allows more sophisticated discrimination into histopathological types
of tumor. For each class, one prototype vector, which represents the entire class,
is constructed. We assume that class prototypes, as well as the objects to be
classified (patients), are coded as interval-valued fuzzy sets (IVFS, see [25, 17])
and that their attributes are normalised to the interval [0, 1]. Then the assign-
ment of the i-th patient to classes labelled by {c1, · · · , cm} can be represented
as follows:

Ãi =
∑

1≤j≤m

ˆsim(C̃j ,P̃i)/cj (9)

where ˆsim is an uncertainty-aware similarity measure, and C̃j and P̃i denote
interval-valued fuzzy set representations of a particular class cj and patient
respectively. This approach was discussed in detail in [24].

The crucial issue for this approach is the method of constructing prototypes.
Prototypes can be formed from data, for example by using clustering algorithms
such as k-means, or can result from the application of expert knowledge. Thus
the proposed method provides a valuable opportunity to integrate knowledge
acquired from data and from an expert in a single tool. Currently used proto-
types were created with the help of gynaecologists based on common medical
knowledge.

In the following we illustrate the use of the Interval-Valued Fuzzy Classi-
fier as a diagnostic module in OvaExpert. The objective is to assign the best
matching histopathological profile of a tumor using the data available before an
operation. Both patient and histopathological profiles are coded as IVFSs. For
the purpose of the example, we will present only four histopathological types.
Two of them were benign – Endometrioid cyst and Mucinous cystadenoma –
and two malignant – Serous adenocarcinoma and Undifferentiated carcinoma.
These types are further referred as HP 1, HP 6, HP 21 and HP 25 respectively.
Let us choose five arbitrary patient attributes: age, size of papillary projections
(PAP), blood serum levels of CA-125 and HE4 tumor markers, and resistive
index (RI). These attributes may be more or less subjective or imprecise. More-
over, some data may not be available at all. A patient’s age is known precisely,
while blood serum levels of tumor markers are subject to some uncertainties.
Resistive index and size of papillary projections are subjective attributes, thus
their value is uncertain. Moreover, for technical, medical or financial reasons,
values of the last three attributes may not be known. Example histopatho-
logical profiles and patient data are presented in Tables 1 and 2. Note that
all attributes’ values are scaled to the unit interval and that patients’ missing
values are represented by the [0, 1].

A classification using the Interval–Valued Fuzzy Classifier can be computed.
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HP type AGE PAP CA125 HE4 RI

HP 1 [0.27, 0.64] [0.00, 0.27] [0.00, 0.04] [0.00, 0.03] [0.49, 0.78]
HP 6 [0.29, 0.72] [0.00, 0.14] [0.00, 0.18] [0.01, 0.06] [0.22, 0.83]
HP 21 [0.47, 0.76] [0.00, 0.52] [0.30, 1.00] [0.12, 0.90] [0.23, 0.56]
HP 25 [0.39, 0.77] [0.00, 0.58] [0.15, 0.98] [0.04, 0.62] [0.27, 0.45]

Table 1: Profiles of ovarian tumor histopathological type coded as IVFS.

Postoperative

diagnosis

AGE PAP CA125 HE4 RI

HP 21 [0.62, 0.62] [0.00, 0.25] [0.95, 1.00] [0.95, 1.00] [0.00, 1.00]

Table 2: Patient profile coded as IVFS.

By definition, the patient’s classification is the following:

Ã1 =
ˆsim(P̃1,h̃p1)/hp1 +

ˆsim(P̃1,h̃p6)/hp6+

ˆsim(P̃1,h̃p21)/hp21 +
ˆsim(P̃1,h̃p25)/hp25

. (10)

We use the classical Jaccard index

sim(A,B) =
|A ∩B|
|A ∪B|

=

∑
i min(A(xi), B(xi))∑
i max(A(xi), B(xi))

(11)

to build the uncertainty-aware similarity measure

ˆsim(Ã, B̃) =

 min
A(xi)≤A(xi)≤A(xi)

B(xi)≤B(xi)≤B(xi)

sim(A,B), max
A(xi)≤A(xi)≤A(xi)

B(xi)≤B(xi)≤B(xi)

sim(A,B)

 .
(12)

The interval membership of a patient in class HP 1 is calculated as a minimum
and a maximum of ∑

i min(ai, bi)∑
i max(ai, bi)

. (13)

where ai, and bi satisfy:

0.62 ≤ a1 ≤ 0.62

0.0 ≤ a2 ≤ 0.25

0.95 ≤ a3 ≤ 1.0

0.95 ≤ a4 ≤ 1.0

0.0 ≤ a5 ≤ 1.0

and



0.27 ≤ b1 ≤ 0.64

0.0 ≤ b2 ≤ 0.27

0.0 ≤ b3 ≤ 0.04

0.0 ≤ b4 ≤ 0.3

0.49 ≤ b5 ≤ 0.78

. (14)
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The final patient diagnosis represented by IVFS is the following:

Ã = [0.07,0.48]/hp1
+ [0.08,0.52]/hp6

+ [0.21,0.99]/hp21
+ [0.13,0.90]/hp25

. (15)

The interval–valued score towards class HP 1 is [0.07, 0.48], which is low.
By contrast, the score for class HP 21 is [0.21, 0.99].

3.3. Module Based on Interval-Valued Fuzzy Set Cardinality

In this section we present a new approach to making decisions in an Interval-
Valued Fuzzy Set (IVFS) environment based on cardinality. The natural way
for humans to make decisions based on many sources (or many experts) is
a strategy of counting. By counting, people determine how many sources or
experts vote for and how many vote against a given option, and then they choose
the decision for which most of them have voted. Since the decision in our case
is taken on the basis of multiple source decisions represented as intervals, it
seems natural to estimate the maximum and minimum possible confidence for
a particular decision. Such an approach suggests the use of the cardinality of
IVFSs representing the limits of both intervals: supporting and rejecting the
decision.

To be able to describe our method we have to introduce some basic concepts
from the theory of cardinality of IVFSs. A comprehensive compendium on this
theory can be found in [17]. Another example of an application of fuzzy set
cardinalities with weighting functions in decision-making can be found in [26].

A scalar cardinality (Sigma f − Count) of an IVFS Ã can be defined as an

interval scf (Ã) = [σf (Al), σf (Au)] where

σf (A) =
∑

x∈supp(A)

ft(A(x)) (16)

and f : [0, 1] → [0, 1] is a weighting function (sometimes called cardinality
pattern) fulfilling the conditions f(0) = 0, f(1) = 1 and f(x) ≤ f(y) whenever
x ≤ y. The weighting function plays a crucial role in computing a cardinality.
It is worth noting that when f = id the cardinality is equal to the sigma-count
defined by Zadeh in [27]:

σf (A) =
∑

x∈supp(A)

A(x) (17)

In this article, for simplicity, we will use two basic cases of weighting func-
tions:

• The function f1,t, resulting in a cardinality called counting by thresholding
(see Figure 8)

f1,t(x) =

{
1, if x ≥ t,
0 otherwise

(18)

16



0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 8: Weighting function f1,tfor t = 0.5

• The function f2,t, resulting in a cardinality called counting by thresholding
and joining (see Figure 9)

f2,t(x) =

{
x, if x ≥ t,
0 otherwise

(19)
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Figure 9: Weighting function f2,t for t = 0.5

where t ∈ (0, 1] is a threshold determining whether we count elements or not.
As in the previously described method, we use existing diagnostic models

as the sources for our decision. The data used in the diagnostics modules can
contain missing values. So in this approach, a patient diagnosis is represented
by an IVFS Ã = (Al, Au) with Al ⊂ Au in the universe of N applied diagnostic
models. Fuzzy sets Al and Au represent respectively the lower and upper bounds
of the decisions given by the models. These values can be interpreted as follows:
a value closer to 0 means a decision towards benign, a value closer to 1 means a
decision toward malignant. Figure 10 shows an example of diagnosis using six
models for the same patient.

Using a bipolar perspective we define two IVFSs: pro P̃ and contra C̃ di-
agnosis. The set P̃ = (Al, Au) models positive (malignant) diagnosis, and
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Figure 10: Example of source diagnosis of six diagnostic modules as an IVFS

the set C = (A−1u , A−1l ) models negative (benign) diagnosis. Next we count
the cardinality of both sets using Sigma f-Count, which results in two inter-
vals describing the number of models tending towards a malignancy diagnosis
scf (P̃ ) = [σf (Al), σf (Au)] and of modules tending towards a benign diagnosis

scf (P̃ ) = [σf ((Au)−1), σf ((Al)
−1)]. It is worth noting that if we use the weight-

ing function f1,t (counting by thresholding) this approach will be equivalent to
a voting strategy (each model will vote 0 or 1). Having the cardinality intervals

scf (P̃ ) and scf (C̃), we can make a final decision by comparing them in the
following way:

Algorithm 1 Decision Algorithm

if overlap(scf (P̃ ), scf (C̃)) or distance(scf (P̃ ), scf (C̃)) < r then
Decision← NA

else
if center(scf (P̃ )) > center(scf (C̃)) then

Decision←Malignant
else

Decision← Benign
end if

end if

If the cardinality intervals are overlapping (function overlap) or the distance
between the ends of the intervals (function distance) is smaller than a given
number r, the system cannot make a decision. In other words, if the numbers
of models voting pro and contra are similar then it is not possible to make a
decision. The parameter r reflects our intuition of how large should be the
difference between the numbers of pro and contra votes.

If the intervals are not overlapping, then compare the centers of the cardinal-
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predicted
benign malignant NA

actual
benign 0 2.5 1

malignant 5 0 2

Table 3: Cost matrix. The costs were assigned based on expert gynaecologists’ opinions.

ity intervals (function center) and as a decision select the option with the greater
value. This means that we choose the decision with more models supporting it.

The decision algorithm is illustrated in the following example.

LR1 LR2 SM Tim Alc RMI
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Figure 11: Weighting function f2,t for t = 0.5

For the input decisions shown in Figure 11 we execute the algorithm with
parameter r = 1 (a decision should be taken by a majority of at least one).
When the weighting function f2,0.5 was used the following sigma f-counts were

computed: scf (P̃ ) = [1.7, 2.3], scf (C̃) = [3.7, 4.3]. Hence the final decision
is malignant. For comparison, if the function f1,0.5 were used with the same

parameters, the cardinality would be scf (P̃ ) = [1, 3], scf (C̃) = [3, 5] and hence
no decision could be taken.

4. Results and Discussion

The study group consisted of 375 patients diagnosed and treated for ovarian
tumor in the Division of Gynaecological Surgery at Poznan University of Medical
Sciences. Among them, 232 were diagnosed with a benign tumor and 143 with a
malignant tumor. The training set consisted of 200 patients, and the test set of
175 patients. All patients in the training set had a complete set of features. All
patients in the test set had missing values up to 50%. The original diagnostic
models operate directly on the patients’ features. The new diagnostic models
were evaluated on intervals created by the original diagnostic models as it was
described in section 3.1. New diagnostic modules were optimised in the training
phase to minimise the total misclassification cost. The cost matrix was based
on expert knowledge and is presented in Table 3.

We set the learning and evaluation procedures so that, firstly, in the training
phase we simulate possible data incompleteness derived from the patients with
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the complete set of features and, secondly, we estimate misclassification error on
the patients with real incomplete features. Notably, we extend the training set
by a 1000-fold random balanced sampling of 150 patients and random features
obscuration to get missing values in range [0%, 50%].

Performance measures are presented in Table 4. The original diagnostic
models vary in their classification characteristics: some of them tend to be
more conservative (LR1, LR2, SM) and some more liberal (RMI, Tim.). This
can be observed in the considerable differences between values of sensitivity
and specificity. Only one model maintains a balance between those two factors
(Alc.). Unfortunately, all six models have low decisiveness (due to the lack of
some patient attributes), which results in high total costs for these models.

The new diagnostic modules have high values of both sensitivity and speci-
ficity. Two of them tend to be more conservative (OEA and IVFC), and one
maintains a balance between sensitivity and specificity (FSC). These algorithms
can handle incompleteness of the input data, so levels of decisiveness are very
high. As a result, the total costs for the modules are much lower – approximately
two times lower than in the original models.

Total cost Dec. Sen. Spec. Acc.

O
ri
g
in
a
l

m
o
d
el
s

Alc. [2] 189.0 20.6 % 88.2 % 89.5 % 88.9 %
LR1 [6] 184.0 27.4 % 92.6 % 57.1 % 77.1 %
LR2 [6] 164.0 33.1 % 94.3 % 65.2 % 82.8 %
RMI [5] 156.0 56.6 % 75.9 % 87.1 % 83.8 %
SM [3] 142.0 62.9 % 94.6 % 71.2 % 79.1 %
Tim. [4] 159.0 47.4 % 66.7 % 97.1 % 91.6 %

N
ew

d
ia
g
.

m
o
d
u
le
s OEA 72.0 96.6 % 90.2 % 86.4 % 87.6 %

IVFC 72.5 100.0 % 90.4 % 84.6 % 86.3 %
FSC 78.5 93.7 % 87.2 % 88.9 % 88.4 %

Table 4: Performance measures of the original diagnostic models and new diagnostic modules.
Results are obtained on the test set. Abbreviations: Dec. – Decisiveness, Sen. – Sensitivity,
Spec. – Specificity, Acc. – Accuracy, OAE – module based on diagnostic models aggregation
(section 3.1), IVFC – module based on interval-valued fuzzy classifier (section 3.2), FSC –
module based on interval-valued fuzzy set cardinality (section 3.3).

A statistical comparison between the original models and new diagnostic
modules is presented in Table 5. The new diagnostic modules classify signifi-
cantly differently than the original models. Although the modules differ in their
performance measures, the classification difference among them did not reach
statistical significance.

In the light of the foregoing results, OvaExpert provides a promising classi-
fication tool. The final diagnosis can be achieved based on binary classification,
as well as with the use of a multi-class approach. All of the new methods can
handle data incompleteness without imputing missing values, which leads to a
high level of decisiveness. The aforementioned division of the dataset is the
first step to obtain reliable and stable evaluation results of our approach. In
the next phase of development of the system we will evaluate our models on
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New diagnostic modules
OEA IVFC FSC

O
ri
g
in
a
l

m
o
d
el
s

Alc. [2] < 0.001 < 0.001 < 0.001
LR1 [6] < 0.001 < 0.001 < 0.001
LR2 [6] < 0.001 < 0.001 < 0.001
RMI [5] < 0.001 < 0.001 < 0.001
SM [3] < 0.001 < 0.001 < 0.001
Tim. [4] < 0.001 < 0.001 < 0.001

N
ew

d
ia
g
.

m
o
d
u
le
s OEA - 0.579 0.579

IVFC 0.579 - 0.093
FSC 0.579 0.093 -

Table 5: McNemar’s test with Benjamini-Hochberg correction between the original diagnostic
models and new diagnostic modules (α = 0.05). Results are obtained on the test set. Abbrevi-
ations: OAE – module based on diagnostic models aggregation (section 3.1), IVFC – module
based on interval-valued fuzzy classifier (section 3.2), FSC – module based on interval-valued
fuzzy set cardinality (section 3.3).

external datasets delivered by cooperating medical centres in Europe. This will
also help us in re-assessment of statistical comparison of the classifiers, since our
dataset may not be large enough to deliver a robust evidence on classification
difference.

5. Conclusions and Further Work

We have presented the development of a system to support decision-making
in the diagnosis of ovarian tumors. We have also presented the theoretical basis
and the most important diagnostic algorithms used in the system. As reflected
in the results, if the input data is incomplete, the system copes much better
compared with existing diagnostic models. Hence, it can support the physician
more effectively in actual diagnosis.

Naturally, we are still faced with the challenge of improving the system.
One of the challenges is to collect more data in order to optimise the algorithms
more effectively. This can be done by deploying the system at many specialised
medical centers. Moreover, it seems to be necessary to carry out studies on
the effectiveness of the proposed algorithms on external data. We are currently
working on the preparation of such analyses.
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[8] R. Moszyński, P. Żywica, A. Wójtowicz, S. Szubert, S. Sajdak, A. Sta-
chowiak, K. Dyczkowski, M. Wygralak, D. Szpurek, Menopausal status
strongly influences the utility of predictive models in differential diagno-
sis of ovarian tumors: An external validation of selected diagnostic tools,
Ginekologia Polska 85 (12) (2014) 892–899.

[9] C. Van Holsbeke, B. Van Calster, L. Valentin, A. C. Testa, E. Ferrazzi,
I. Dimou, C. Lu, P. Moerman, S. Van Huffel, I. Vergote, D. Timmerman,

22



External validation of mathematical models to distinguish between benign
and malignant adnexal tumors: a multicenter study by the International
Ovarian Tumor Analysis Group, Clinical Cancer Research 13 (15) (2007)
4440–4447.
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