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Abstract. This work presents an approach to deal with uncertainty in
patient’s medical record. After giving a brief characterisation of possible
sources of uncertainty in medical records, the paper introduces fuzzy set
based approach that allows modelling of such information. First, hetero-
geneous data is converted to homogeneous model with the use of Feature
Set structure. With such model uncertainty may be represented directly
as Fuzzy Membership Function Families (FMFFs). Some theoretical re-
sults connecting FMFF's with Hesitant Fuzzy Sets and Type-2 Fuzzy Sets
are also given.

Keywords: medical data, hesitant fuzzy sets, imperfect information

Acknowledgement. This work was supported by the Polish National
Science Centre grant number 2016,/21/N/ST6,/00316.

1 Introduction

Over the years, many models have been developed to extend and generalise
the fuzzy sets theory. Motivation for a large part of them was the modelling
of broadly understood data uncertainty. Most commonly used in practice are:
IVFS[1], AIFS[2, 3], HFS[4], and T2FS]1, 5, 6]. All these extensions enrich the set
of values that membership function can take, replacing a single number with an
interval, set, and even a fuzzy number in [0, 1]. Depending on the interpretation,
new values of membership can be considered as separate ”logical” values (ontic
interpretation) or as an approximation of our imperfect knowledge of a certain
value (epistemic interpretation) [7, 8].

This work is devoted to uncertainty in an epistemic sense, i.e. one that results
from limited, incomplete or imperfect knowledge. The simplest case is the com-
plete lack of knowledge — the case of incomplete data. However, even here one
should be careful. Missing values are often marked with a very ambiguous ab-
breviation NA. NA — not available — the value is not available, no one conducted
an examination or test. This is a perfect example of total epistemic uncertainty.
On the other hand, another interpretation of NA — not applicable — has nothing
to do with the incompleteness of the data. After all, this is completely certain
information that a given parameter is not suitable for describing a particular
case. This fact further highlights how important it is to understand the context
of modelled data.



The primary objective of this paper is to describe how one can use fuzzy sets
for patient record modelling. The two main problems will be addressed. The first
involves the process of transforming heterogeneous medical data into a fuzzy set
with clearly defined semantics. The second concerns the modelling of epistemic
uncertainty.

The rest of the paper is organised as follows. Section 2 gives some background
information about fuzzy sets and their extensions. The third section covers the
issue of medical data normalisation. Section 4 deals with uncertainty model for
medical data. The concept of Fuzzy Membership Function Family (FMFF) is
defined and some theoretical results connecting it with Hesitant Fuzzy Sets and
Type-2 Fuzzy Sets are given. Finally, in Section 5 some conclusions and areas
for further research are given.

2 Definitions

Let U = {x1,22,...} be a crisp, at most countable universal set. A mapping
AU — [0,1] is called a fuzzy set in U. For each i, the value A(x;) (a; for
short) represents the membership grade of z; in A. Let FS(U) be the family of
all fuzzy sets in U.

Interval-valued fuzzy set theory, which is a special case of Type—2 Fuzzy Set
(T2FS) theory, was introduced by Zadeh [1]. Let Z be the set of all closed subin-
tervals of [0,1]. A mapping A: X — T is called an Interval-Valued Fuzzy Set.
For each 1 < i < n, the value A(z;) = [A(x;), A(x;)] € T represents the mem-
bership of an element z; in A. Usually A and A are called the lower and upper
membership functions of A respectively. In epistemic approach, interval A(:Ez) is
understood to contain the true membership degree of x; in some incompletely
known fuzzy set A represented by A. We denote the set of all interval-valued
fuzzy sets in U by ZVFS(U).

In 2010, Torra defined Hesitant Fuzzy Sets (HFS, [4]). They perfectly combine
the simplicity of IVFS and the ability to model very complex data provided by
Type—2 Fuzzy Sets [9]. The important fact about Hesitant Fuzzy Sets is that
they were created with the aim of representing the uncertain, epistemic data. A
Hesitant Fuzzy Set is a mapping A : X — 2[%1] Tt is worth noting that this is an
equivalent concept to the notion of Set-Valued Fuzzy Sets [9, 10]. Type-2 Fuzzy
Sets were proposed by Zadeh in 1971 [11]. They generalise most of the known
extensions of fuzzy sets. A T2FS is defined as a mapping A : X — FS([0,1)).

3 Modelling medical data as fuzzy membership function

In applications such as classification or decision support, it is often required
that individual instances (patients) should be represented as homogeneous real
vectors. Given the wide variety of data types encountered in the patient record,
direct conversion / normalisation of data can lead to some anomalies. In this
section we will present a procedure for converting heterogeneous medical data
into a homogeneous model that allow to preserve full semantics of data.



Table 1. Sample medical data represented with original values.

No Age Gender Tumor in WBC Qualitative Quantitative
family assessment assessment

1 38 F yes 2817.3  1/brown 2/medium

2 18 F no 2181.8  3/blue 4/very high

3 64 F no 8611.3  4/yellow 1/low

4 40 F yes 3017.1  2/grey 2/medium

Table 2. Data from Table 1 after min/max normalisation.

No Age Gender Tumor in WBC Qualitative Quantitative
family assessment assessment

1 0.38 1 1 0.282 0.0 0.333

2 0.18 1 0 0.218 0.667 1

3 0.64 1 0 0.861 1.0 0

4 0.40 1 1 0.302 0.333 0.333

3.1 Data normalisation and fuzzy sets

Let start with the example data presented in Table 1. The simplest methods of
transforming these data are min/max normalisation and standardisation. Table
2 shows the results of the min/max normalisation.

Many researchers (including the author of this work [12,13]) have tried to
treat these vectors as fuzzy sets. This is a convenient approach because there are
many useful tools in the field of Fuzzy Logic such as similarity measures or rule
based models. This approach leads to the following fuzzy sets in the universal
set U = {age, gender, in family, WBC, qualitative, quantitative}:

A1 =" sget Y sender+/in tamity +° 2% wBc+" quaitative+ > quantitative - (1)

This design is correct (at least formally). In addition, through the use of ap-
propriate methods, it is possible to achieve very good results, for example, in
supporting medical diagnosis [12, 14].

But can A; be called a (fuzzy) set? What would it contain? It turns out
that the interpretation of such fuzzy set is difficult to determine. Of course,
according to the characteristics given in the classic work of Dubois and Prade
[15], we are dealing here with the ”degree of similarity” semantics. However, to
be able to interpret the degrees of membership as the similarity, a reference point
(prototype) is required. Was it determined in this case? Certainly not explicitly.
For some attributes, definition of the ”prototype” is a simple task: age — old
person; WBC — high serum level; quantitative assessment — very high. The most
difficult part is to determine prototype for the qualitative assessment, and it is
an attribute type that most often cause problems. Choosing the highest value
(4/yellow) as a prototype is as unjustified as any other. There is no naturally
defined order between the values. It can not be said that 2/green is somehow
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Fig. 1. Linguistic variables used to define feature set for data from previous subsection.

similar to 4/yellow, since they are not related to each other and cannot be
compared.

In this section a method of data normalisation will be given, which in par-
ticular:

— allows to specify a clear semantics of a (fuzzy) set for a patient representa-
tion,

— describes how to deal with different types of data in order to preserve their
interpretation,

— can be easily extended to model the uncertainty.

3.2 Proposed approach to normalisation

The basic idea is to represent each instance (the patient) as a fuzzy set. For
this purpose, the concept of feature set will be introduced. Each instance is
described by a fuzzy set of features that it has. The feature set itself is defined
in terms of the mappings from any number (k) of attributes to a single feature
fi : R¥ = [0,1]. Each such mapping should also give clear description of the new
feature meaning. In this paper we will present simple approach where each term
of linguistic variable defines new mapping. Interpretations of terms for linguistic
variables for the data from the previous example are shown on Fig. 1.
Particular attention should be paid to the attribute ” qualitative assessment”.
The corresponding linguistic variable has 4 terms, one for each value. In this
situation, the fuzzy set representing the patient will contain 4 four features
for one attribute. Moreover, each of these features can have a different level of
membership, symbolically indicated by the dashed line in the graph. Whether
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Fig. 2. Alternative definition of linguistic variable for WBC attribute.

a given attribute, and later a feature allows partial membership depends only
on the semantics of the attribute (e.g. gender where a partial membership to
"women” feature is rather difficult to interpret).

Also for numerical attributes, conversion to features using the linguistic vari-
able brings some certain advantages. In addition to clearly defining the meaning
of membership degree, we also get the possibility of a more advanced, but still
easy to interpret, transformation of numerical values. For example, for a WBC
attribute the medically recognised norm is 4000-10000. Hence, instead of defin-
ing a feature as "high”, you can specify the "normal” feature, as shown in the
Fig. 2. Although it’s just a small change, experience shows that it can signif-
icantly affect model quality, especially when we are limited to simple models
such as regression [16, 17]. In addition, the medical norm, rather than embedded
into the decision model, is explicitly included in the data model, which in some
applications can be very useful.

What will be the fuzzy representation of patients from the previous subsec-
tion? First, the universal set is now a set of all features in feature set. Membership
values are now calculated with respect to each term interpretation. The patient
record is represented by the following fuzzy set:

P = 0.5/01d+1/w0man+1/in family+0.28/high VVBC""1/1/br0wn—’_0.33/(1‘-1amtitative : (2)

Apparently little has changed compared to (1). Referring to the three semantics
of a fuzzy set, we are still in the ”degree of similarity” semantics. However, now
P, can certainly be called a fuzzy set. It is a set of features possessed by the
first patient. Answer to the question whether a € P; has simple interpretation
and tells whether and to what extent a feature a describes the specific medical
case. All membership degrees, regardless of the data type of the corresponding
attribute, now have a uniform and clearly defined interpretation.

However, the greatest advantage of this data model, is the ability to directly
model incomplete and, more generally, uncertain data. The proposed data un-
certainty model will be formalised in the next section. The aim of the following
discussion is to show that an adequate data model can considerably simplify
modelling of the uncertainty.

The benefits of using the feature set based model for the representation of
incomplete data will be presented on the examples of attributes from the begin-



ning of the section. It will be compared to the classical min/max normalisation.
Singleton notation will be used, where membership value depending on the sit-
uation may be modelled by number, interval or arbitrary set which corresponds
to the normal, interval and hesitant fuzzy sets.

Lack of knowledge of the patient’s age may occur for elderly patients whose
documentation is missing, and getting information from them is not possible.
For example, if a patient was born before 1939, then in the new model, thanks
to the use of non-linear normalisation with the use of the linguistic variable
we have 1/ old- With min/max normalisation, it would be necessary to use the
interval membership degree [0'79’1]/ age- The uncertainty for the gender attribute
may result from the refusal to provide information. In our model, this means that
the ”woman” feature can simultaneously belong and not belong to the feature
set. Hence, we get {91}/, nan. Because for this feature there is no sense of
partial membership, we use a two-element set instead of interval. In the classic
approach, you can use the same model {0’1}/ gender- 1 the case of cancer in
the family, the patient can know only the immediate family, or part of it. For
example, if it is known that the cancer did not occurred in parents and the distant
family is unknown, then such situation can be modelled in both approaches as
[0’0.8]/in family -

The most interesting, however, is the case of qualitative assessment (in the
example of eye colour), where modelling of some uncertainty variants posed prob-
lems. Suppose that the only thing that is known about eye colour is that they
are not 3/blue. In the original model we get {03313/ 1 i, However, such
a degree of membership can not be easily converted to interval, which makes
it impossible to use simple modelling using for example IVFS. Thanks to new
normalisation scheme we have 4 features which allows us to use following repre-
sentation [0’1]/1/brown + [0’1]/2/grey + [0’1]/4/yellow. Therefore, the same knowledge
was successfully modelled using only intervals. What if the doctor evaluating a
given parameter is leaning towards option 1/brown but does not exclude 4/yel-
low? Unfortunately, this information can not be reproduced in the classic model,
where at most we can write {0’1}/ qualitative (solution using T2FS is possible, al-
though is not feasible here). Thanks to the introduction of feature set, we have

[0’0'75]/1/br0wn + [0’0'25]/4/yellow

3.3 Evaluation

Evaluation was based on test dataset from recent research on application of
aggregation operators to incomplete data classification [18]. Original study group
consists of 388 patients diagnosed and treated for ovarian tumor in the Division
of Gynecological Surgery, Poznan University of Medical Sciences, between 2005
and 2015. Among them, 61% were diagnosed with a benign tumor and 39% with
a malignant one. Moreover, 56% of the patients had no missing values in the
attributes required by diagnostic models, 40% had a percentage of missing values
in the range (0%, 50%], and the remainder had more than 50% missing values.
The test set consists of patients with real missing data and some proportion of
patients with a complete set of features. As a result, the test set consisted of
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Fig. 3. Total cost of classification based on data normalised using some variant of
min/max (original research) and using proposed approach. The lower the value the
better classification is. Models A, B and C are selected best models form original
research.

175 patients. Patients with more than 50% missing values were excluded from
the study. The results from [19] are reproduced and compared with the same
classification scheme applied to data normalised using proposed approach. For
more information regarding dataset we refer the reader to original papers [18-20].

Performance of classification based on data normalised using some variant of
min/max (original research) and using proposed approach are presented in Fig.
3. Total cost method was used to measure model performance since accuracy does
not fit the medical diagnosis problem. They show that change of normalisation
scheme may give slight improvement in overall classification cost. The main
reason of this improvement is proper handling of qualitative attributes.

4 Families of fuzzy membership functions

The previous section shows that the patient’s medical record can be reliably and
unambiguously modelled while still preserving the semantics of the fuzzy set.
It was also presented that it may have positive impact on modelling of incom-
pleteness and uncertainty. Although the examples presented here will relate to
medical issues, the model and results of this section are generic to any fuzzy set,
regardless of interpretation.

4.1 Motivation

In this subsection, two example problems will be presented. They aim is to show
that classic approaches to uncertainty modelling based on fuzzy sets may not be
sufficient to fully take into account all available knowledge. First example shows
that interval representation of uncertainty, though effective, is not sufficient to
fully reflect the real data. Second one presents situation where some information
is lost during conversion to fuzzy based representation.
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Fig. 4. Drawing of ovaries from Example 1 along with their interval representations.

Ezxample 1. Figure 4 presents drawings of ovaries, which in actual medical prac-
tise are obtained with the help of ultrasound. Among the many features evaluated
by a physician, very interesting is the case of papillary projections and septum.
Drawings I and II show an average size papillary projection and total septum,
respectively (along with interval representation below). Sometimes the septum is
not yet completely developed which has been depicted in the third drawing. The
fourth drawing shows a situation where you can not explicitly qualify whether
we are dealing with a large papillary projection and the lack of septum (red,
dotted line), or maybe it is a small papillary projection and almost full septum
(blue, dashed line). The inability to distinguish between these two situations
arises only from lack of knowledge (the impossibility of observing the ovary from
the other side). As can be seen interval representation is not sufficient to cover
both situations in one data description (it is necessary to assign two disjoint
intervals). This example shows the limitations of interval representation of in-
complete data, indicating a real need for more general formalism with greater
power of expression such as HF'S.

Ezample 2. Let assume we have information on the volume of tumor calculated
as V' = ~abc. Unfortunately, some diagnostic models use a combination of the
two largest dimensions of the tumor M = aa+ Bb. For simplicity, we can assume
that « = 8 =+ =1 and that a,b,c > 1.

Let for a certain patient V = 200mm?. Representing the three dimensions
of the tumor as intervals we get a = [1,200], b = [1,200] and ¢ = [1,200].
Calculating the model using interval arithmetic we get M = [2,400].



The same data, however, can be better represented by the use of appropriate
set-based approach A = {(a,b,c): abc =200,a > b > c}. The M model with
such a knowledge representation gives:

M' = M(A) ={M(a,b) : (a,b,c) € A} ~ [11.696,201]. (3)

It is easy to see that the resulting model values are much more specific and
M' c M.

Using interval representation and arithmetic we lose some important infor-
mation. This knowledge is given in the form of dependencies between several
membership degrees, and therefore can not be represented using three indepen-
dent intervals.

4.2 Proposed approach to uncertainty modelling

This subsection will present a new approach to uncertainty modelling. During
its design, it was assumed that it should be as simple as possible and based on
fuzzy sets, and most importantly allow for modelling the situations presented in
Examples 1 and 2. For the purposes of modelling medical data, we can narrow
the discussion to the situation in which the universal set U is at most countable.
Then, FS(U) can be treated as a subset of R™ or {*°.

Any closed subset A of FS(U) will be called Fuzzy Membership Function
Family (FMFF). Most known extensions of fuzzy sets can be fully accurately
represented using FMFF. For example, interval-valued fuzzy set A corresponds
to the following FMFF

A={AeFSWU) :Voer A(x) < Az) < A(z)} . (4)

This approach is largely inspired by the Mendel representation theorem and his
Wavy-Slice representation [21,22]. Referring to this theory for the above IVFS
we have A = FOU(A).

Returning to the examples from the previous subsection, one can see that
both situations can be directly modelled using FMFF.

Ezample 3 (Solution to Example 1). The situation shown in Fig. 4 IV can be
represented by the following FMFF

.AIV = {a/pap + ﬁ/septum E]:S({pa'p7 Septum}) :
(@, B) € [0,0.25] x {1} U [0,0.25] [0.75,1]}. (5)

Ezample J (Solution to Fxample 2). The solution to this problem has already
been implicitly given. Now it will be shown in the formalism of fuzzy sets. The
first step is normalisation of input data. Because they are numeric attributes,
simple approach is sufficient. For all three tumor dimensions, we define the same
mapping shown in Fig. 5. Thus, we obtain following FMFF representing patient
condition

-A = {#big(a)/ﬁrst + Mbig(b)/second + Hbig(b)/third : CLbC = 200} . (6)
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Fig. 5. Linguistic variable used to convert tumor dimensions from Example 4.

Diagnostic model needs to be adapted to handle normalised data
Mhiorm (“big(a)/ﬁrst + 'ubig(b)/second + #big(b)/third) =a+b. (7)

With this model we obtain Muerm (A) = [11.696,201] which is an optimal solu-
tion.

Definition 1. Let ~ be an equivalence relation between FMFF such that
A~B <= Voey {palz): Aec A} ={up(z): B e B}. (8)

Two FMFF are ~—equivalent if they have exactly the same membership val-
ues for the same elements of the universal set. In accordance with this observation
it should not be surprising that the equivalence classes [A]. can be identified
with Hesitant Fuzzy Sets.

Remark 1. Hesitant Fuzzy Sets are the smallest extension of fuzzy sets con-
taining all FMFF in which there are no dependencies between the membership
degrees of different elements of U.

Since HF'S accurately describes the values of membership, ignoring the depen-
dencies, they can be extended with the description of the dependency, gaining
much wider data modelling capabilities.

Consider now the situation in which individual membership functions belong-
ing to the FMFF have the weights assigned to them. Weighted FMFF (WFMFF)
is defined as

A* C FS(U) x [0,1]. 9)
Similarly as before, equivalence relation can be defined.

Definition 2. Let ~* be an equivalence relation between WFMFF such that
A~ B = Vo Vaew {na(@) : (A, w) € A} = {up(a) : (Bw) € BY) .
(10)
In this case, the equivalence classes [A*].+ can be identified with Type-2

Fuzzy Sets.

Remark 2. Type—2 Fuzzy Sets are the smallest extension of fuzzy sets containing
all WFMFF in which there are no dependencies between the membership degrees
of different elements of U.



4.3 Computational issues

In order for the proposed model to be used in practice, it is necessary to solve
computational problems. The model in the proposed form is computationally
inefficient at least using classical computation methods. Of course, by applying
appropriate restrictions to HFS and representation of dependencies, this task
can be reduced to various known computational problems, for example to linear
programming, for which there is an effective calculation method. The second ap-
proach is to use highly parallel and increasingly accessible computing platforms
such as GPGPU (general-purpose computing on graphics processing units) to
effectively find satisfactory solutions. The author of this work believes that the
combination of these two approaches will allow the construction of computation-
ally efficient models based on FMFF.

5 Conclusions and Further Research

The presented results are the starting point for a comprehensive approach to
modelling medical data. By defining an unambiguous and uniform interpretation
of the patient record as a fuzzy set, further efforts can be focused on the problems
of modelling data uncertainty and developing methods of supporting medical
diagnostics.

The most important direction of further research, is the research on the effec-
tive use of this model in practical computations. However, for this to be possible,
at least a few theoretical issues must be solved. It is necessary to examine the
theoretical properties of the FMFFs which may be required to simplify compu-
tations. Moreover, it is important to solve the problem of additional elements
introduced in feature set, which in some cases can increase the computational
complexity and even reduce the efficiency [23]. This can be done thought in-
troduction of hierarchical data model. It still needs to be developed formally.
There is proposition to use lattice theory and L—Fuzzy Sets to solve this prob-
lem. The last step is to reconstruct some operations on FMFFs, important from
the practical point of view, such as similarity measures.
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