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Abstract

The main topic of this paper is the notion of relative cardinality for interval-
valued fuzzy sets - its definition, properties and computation. First we define
relative cardinality for interval-valued fuzzy sets following the concept of uncer-
tainty modelling given by Mendel’s Wavy-Slice Representation Theorem. We
expand on previous approaches by considering relative cardinality based on dif-
ferent t-norms and scalar cardinalities and we initiate an investigation of its
properties and possible applications. Drawing on the Nguyen–Kreinovich and
Karnik–Mendel algorithms, we propose efficient algorithms to compute relative
cardinality depending on a chosen t-norm. This seems to be the first such broad
and consistent analysis to have been made of relative cardinality for interval-
valued fuzzy sets. As a promising application we consider using interval-valued
relative cardinality to construct the family of parameterised subsethood mea-
sures.

Keywords: relative scalar cardinality, interval-valued fuzzy sets, interval
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1. Introduction

The need to model the imprecision and incompleteness of information has
given rise to fuzzy set theory and its many extensions. Conventional fuzzy
set theory is suitable for handling imprecise (gradual) statements, by allowing
degrees of truth other than just true or false. However, it appears to be insuffi-
cient in the presence of incomplete (partial) information, when the exact degree
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of truth cannot be specified. We recognise this kind of situation as involving
uncertainty, the “real” truth value being concealed.

Undoubtedly, uncertainty is widespread in real life and practical applica-
tions, and cannot be ignored. The phenomenon has been studied for many
years, and there are two main approaches to understanding the uncertainty of
information [1] – epistemic and ontic. In both of them an uncertain concept is
described by a set of its possible representations. In the epistemic approach,
without additional knowledge it is impossible to pick the right one among them,
although the right one exists. In the ontic one, all representations are equally
acceptable and there is therefore no need to distinguish between them. For
example let us consider a concept of a monthly salary for assistant professor,
described by the interval [$4000, $6000]. Such an interval would have an on-
tic interpretation if it described the minimum and maximum threshold of the
salary for the position of assistant professor in some institution. On the other
hand, if this interval was supposed to describe an actual salary of some partic-
ular assistant professor, it should be interpreted in an epistemic way. What is
important, both interpretations require different processing methods in order to
capture the nature of uncertainty involved.

The fuzzy set community, motivated by the importance of uncertainty mod-
elling and processing, has considered some generalisations of classical fuzzy set
theory in order to capture the uncertainty factor. Of special interest among
these are interval-valued fuzzy sets (IVFS, [2]), Atanassov’s intuitionistic fuzzy
sets (AIFS [3, 4]), interval type-2 fuzzy sets (IT2FS, [5, 6]) and general type-
2 fuzzy sets (T2FS, [2, 7, 8]). All of these models have been widely applied
in a variety of fields, including medical diagnosis [9, 10, 11], approximate rea-
soning [12, 13], classification [14], fuzzy control [15, 16], and decision making
[17]. Since these approaches provide a more adequate representation of expert
knowledge, they frequently outperform classical and type–1 fuzzy approaches.
Characterisation of uncertainty associated with these concepts is a separate re-
search problem [18]. In the following we adopt the IVFS approach; however,
it should be noted that IVFS and AIFS are mathematically equivalent notions
[19]. IVFS theory is able to represent both of the above-mentioned approaches
to understanding uncertainty. The ontic one is more common in literature and,
moreover, it is often adopted implicitly by the authors. The epistemic approach
is still less explored but seems to better reflect many real-life problems and thus
there is a need for research in this area. The results presented in this paper,
although formally valid for both representations, have been developed especially
for epistemic uncertainty.

Adding uncertainty to the field of consideration poses new challenges as
regards to how to compare and operate on uncertain objects properly, effectively
and without losing information about the amount of uncertainty. Much research
has been done in this area, proving that these operations and relations are not
just straightforward extensions of their crisp or fuzzy counterparts. Although for
practical reasons some measures for uncertain objects are single values (see e.g.
some similarity measures [20, 21, 22]), it seems to be more adequate to express
those measures in an uncertain manner. Such an approach is employed, among
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others, by Mendel’s group, who use intervals to capture the uncertainty of an
IT2FS. A deep study of uncertainty measures for IT2FS has been conducted,
and centroid, cardinality, fuzziness, variance and skewness were all considered
[23, 24]. It must be emphasised that, because of the more complex structure of
an uncertain objects, the cost of computing uncertain measures is also higher,
and thus the construction of such measures may be an algorithmic challenge.
The issue of the effectiveness of computing such measures has been addressed
by, among others, the Karnik–Mendel algorithms [25, 26]. However, there are
still many important measures that require further research. The need for a
general form of subsethood measure for IVFSs was the direct motivation of our
study. Such a problem was also recognised by other researchers, see e.g. recent
paper by Takáč [27], who constructed subsethood measures for interval-valued
fuzzy sets based on the aggregation of interval fuzzy implications. Our paper is
devoted to the approach proposed by Kosko [28], in which subsethood is defined
in terms of the relative cardinality of two fuzzy sets. This idea is discussed in
Section 3.

The primary objective of this paper is to extend relative cardinality of fuzzy
sets to the IVFS case, and to construct effective algorithms for its computation.
The notion of relative cardinality itself undoubtedly deserves much attention,
as it provides a basis for many important concepts, not only the subsethood
measure, but also similarity and entropy measures [29], implication operators
[30], quantified sentences [31] and others. As a tool, it is widely applied e.g. in
approximate reasoning [12], association rules quality assessment [32], rule-based
systems [33], fuzzy control [34, 35], group decision making [36, 37], etc .

As a separate research problem, relative cardinality has never been given
sufficient attention in the context of IVFSs. The need to fill this gap led us to
construct t-norm-dependent interval-valued extensions of relative cardinality of
fuzzy sets. As a tool for the extension we used the Wavy-Slice Representation
Theorem [6], which has the desired ability to preserve the amount of uncer-
tainty of IVFSs. To deal with the high complexity of the processed objects, we
extended ideas from the Nguyen–Kreinovich [38] and Karnik–Mendel [25, 26]
algorithms. We showed that the problem can be solved efficiently in the general
case (for any t-norm). Never before has such a comprehensive analysis been
made of relative cardinality for interval-valued fuzzy sets.

The rest of the paper is organised as follows. Section 2 gives some back-
ground information about fuzzy sets and IVFS. The third section covers rela-
tive cardinality, both in the fuzzy case as well as in the proposed extension to
IVFS. In Section 4 we will address the problem of computing interval-valued
relative cardinality. Section 5 contains an extensive evaluation of the proposed
algorithms. Finally, in Section 6 we state some conclusions and offer areas for
further research.

2. Definitions

Let X = {x1, x2, . . . , xn} be a crisp universal set. A mapping A : X → [0, 1]
is called a fuzzy set in X. For each 1 ≤ i ≤ n, the value A(xi) (ai for short)
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represents the membership grade of xi in A. Let F be the family of all fuzzy
sets in X.

A binary operation t : [0, 1] × [0, 1] → [0, 1] is called a triangular norm
(t-norm, for short) if it is commutative, associative, non-decreasing in each
argument, and has 1 as neutral element. The most important t-norms are
minimum tmin(x, y) = min(x, y), product tprod(x, y) = xy, and  Lukasiewicz
t Luk(x, y) = max(0, x+ y − 1). A thorough investigation on t-norms is done in
the classical monograph of Klement et.al. [39].

We consider fuzzy sets with basic set operations induced by a t-norm t. The
intersection of two fuzzy sets A,B ∈ F is then defined as

∀1≤i≤n(A ∩t B)(xi) = t(A(xi), B(xi)) . (1)

Interval-valued fuzzy set theory, which is a special case of type-2 fuzzy set
theory, was introduced by Zadeh [2]. Let I be the set of all closed subintervals
of [0, 1]. A mapping Â : X → I is called an interval-valued fuzzy set. For each
1 ≤ i ≤ n, the value Â(xi) = [A(xi), A(xi)] ∈ I represents the membership of an
element xi in Â. Usually A and A are called the lower and upper membership
functions of Â respectively. In epistemic approach, interval Â(xi) is understood
to contain the true membership degree of xi in some incompletely known fuzzy
set A represented by Â. Its length reflects the amount of uncertainty about the
membership degree of i-th element, taking values from 0 (when A(xi) = A(xi))
to 1 (when [A(xi), A(xi)] = [0, 1]). We denote the set of all interval-valued fuzzy
sets by IVFS.

The cardinality of fuzzy sets has been extensively discussed in the literature
(see [40]). In this paper we will focus on scalar cardinalities of fuzzy sets which
can be characterised by the formula

σf (A) =
∑

1≤i≤n

f(A(xi)) , (2)

where f : [0, 1] → [0, 1] is a weighting function such that f(0) = 0, f(1) = 1
and f(a) ≤ f(b) whenever a ≤ b. This approach formalises and reflects real
human counting process under information imprecision [41]. The most common
weighting function is the identity function fid(x) = x. Consequently, cardinality
of IVFS Â is calculated as [42]

σ̂f1,f2(Â) =
[
σf1(A), σf2(A)

]
, (3)

where weighting functions f1 and f2 are such that ∀1≤i≤n f1(xi) ≤ f2(xi). Most
often it is assumed that f1 = f2 = fid.

3. A concept of interval–valued relative cardinality of IVFSs

3.1. Relative cardinality of fuzzy sets

Relative cardinality (or relative count) of fuzzy sets A and B, introduced by
Zadeh [43], represents the proportion of elements of A which are in B. Using
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the notation from the previous section, it can be written as

σ(A|B) =
σfid(A ∩tmin B)

σfid(B)
. (4)

Relative cardinality was used by Zadeh as a simple and direct method for deter-
mining the truth degree of quantified sentences in natural language processing.
Kosko [28] considered a subsethood measure derived from geometric interpreta-
tion which resulted in an idea identical to Zadeh’s relative cardinality, although
he does not use this term. Delgado et al. [44] carried out extensive studies
on the evaluation of quantified sentences. A review of existing methods was
conducted, and new ones based on relative cardinality were developed. All of
these works considered relative cardinality in the sense of (4). The first who
noticed the possibility of generalisation to other t-norms and scalar cardinalities
was Wygralak [45]. A triangular-norm-based relative scalar cardinality (further
referred as t-norm based relative cardinality), denoted by σf,t(A|B) was defined
as

σf,t(A|B) =
σf (A ∩t B)

σf (B)
with σf (B) 6= 0 , (5)

where t is an arbitrary t-norm and f is a weighting function. Many important
properties of t-norm based relative cardinality have been demonstrated [46].
The concept has been used as a tool in the Quantirius system for linguistic
database summarisation [47].

The use of different t-norms in the relative cardinality formula leads to the
construction of entirely new and diverse forms. Some of their properties and
practical uses are considered in this section. Figures 1 and 2 present contour
plots of the t-norm based relative cardinality σf,t(A|B) of the triangular fuzzy
set A and fuzzy set B. A fuzzy set A is indicated on the plot by a solid line.
Membership values of elements of the fuzzy set B range from 0 to 1, and for
each case a value of σf,t is calculated and represented in greyscale on the plot.
The darker the colour, the higher the value of σf,t(A|B) at that point.

Let us focus on Fig. 1. It can be seen that for standard relative cardinality
with the minimum t-norm, all fuzzy sets B with membership functions below
A obtain the maximum value of σf,t(A|B) (the plot is totally black below A).
This fully agrees with the intuitive interpretation of relative cardinality as a
fuzzy subsethood measure. Different (and difficult to interpret) characteristics
are obtained for the product t-norm, where the value of relative cardinality does
not depend on B in the whole domain. Finally, interesting results are obtained
in case of the  Lukasiewicz t-norm, where the relative cardinality increases with
an increase in B’s membership value (quite opposite to the case of the minimum
t-norm). This suggests that the subsethood interpretation is not intuitive for
either the product or  Lukasiewicz t-norms.

However, the most interesting result is that there are t-norms for which t-
norm based relative cardinality has very similar characteristics to the minimum
t-norm, but is more restrictive. Figure 2 shows contour plots for some Schweizer–
Sklar t-norms with different values of the parameter λ. For λ = −5 the plot
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Figure 1: Contour plots of the relative cardinalities induced by the: minimum (left), product
(middle) and  Lukasiewicz (right) t-norms.

Figure 2: Contour plots of the relative cardinalities induced by Schweizer–Sklar t-norms with
the λ values: -5, -2, -1.25, -0.9 (from left to right).

is almost the same as for the minimum t-norm, but when λ increases to 0
the characteristics of the relative cardinality gradually change, becoming more
and more rigorous. This demonstrates the promising possibility of constructing
parameterised subsethood measures with different properties. The applicability
of similar parameterised conjunction operators was noticed e.g. in the context
of fuzzy controllers in [48].

3.2. Interval–valued relative cardinality of IVFSs

A number of studies aimed at extending the various measures, whether from
the crisp to the fuzzy case, or from fuzzy to IVFS, have been conducted. Cor-
nelis and Kerre showed that some measures extended to IVFS (they considered
AIFS, to be exact) do not reduce to a mere double application of their fuzzy
counterparts [49]. In the same work they recognised that resorting to interval
calculus is not a viable option either.

The ability to model uncertainty in data is the key feature of IVFS. Thus
the same feature should apply to the extended version of relative cardinality. A
successful attempt to extend (5) to IVFS was made by Rickard et al. [50, 51] and
Nguyen and Kreinovich [38]. They considered only the minimum t-norm and
the identity weighting function. Their solution was based on Mendel’s Wavy-
Slice Representation Theorem for IT2FS [5, 6]. The present work adopts the
same approach.

The main concept forming a basis for our extension formula is the Footprint
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Of Uncertainty of an IVFS Â (denoted by FOU(Â)), defined as

FOU(Â) = {A ∈ F | ∀1≤i≤n A(xi) ≤ A(xi) ≤ A(xi)} . (6)

FOU(Â) is a set consisting of all fuzzy sets embedded in IVFS Â. Thus, it rep-
resents all values that can be hidden behind an uncertain Â. Whereas the clas-
sical IVFS representation draws attention only to the lower and upper bounds
of a set, neglecting the variety of other fuzzy instantiations, FOU(Â) forces
one to think of an IVFS Â as an infinite set of fuzzy possibilities. A similar
representation was also independently considered in the context of AIFSs by
Stachowiak [52, 53]. Such an approach makes it possible to preserve the whole
of the information about an incompletely known fuzzy set, and paves the way
for a proper definition of operations on IVFSs, among others for a definition of
relative cardinality given below.

Definition 1. The t-norm based interval–valued relative cardinality of two
IVFSs Â and B̂, induced by a continuous t-norm t and a continuous weighting
function f , is defined as a function σ̂f,t : IVFS × IVFS → I given by

σ̂f,t(Â|B̂) =
{
σf,t(A|B) : A ∈ FOU(Â), B ∈ FOU(B̂)

}
(7)

=
[
σf,t(Â|B̂), σf,t(Â|B̂)

]
(8)

where

σf,t(Â|B̂) = min
A∈FOU(Â)

B∈FOU(B̂)

σf,t(A|B) ,

σf,t(Â|B̂) = max
A∈FOU(Â)

B∈FOU(B̂)

σf,t(A|B) . (9)

Note that, analogously as in (5), Definition 1 applies only when σf (B) 6= 0 for all

B ∈ FOU(B̂). Hereafter we adopt this assumption. Moreover, the requirement
for continuity of t-norm and a weighting function is necessary to ensure that
the set defined by (7) is an interval.

Figure 3 shows an example IVFS Â along with its FOU. Although embedded
fuzzy sets can be of any shape, for simplicity we present two triangular ones,
namely A1 and A2. We can easily calculate relative cardinalities:

σfid,tmin
(A1|A2) = 1 and σfid,tmin

(A2|A1) = 0.811 . (10)

However, computing the value of σ̂fid,tmin
(Â|Â) requires much more effort. It is

not sufficient to consider a single pair of embedded sets, but all possible pairs
of such sets, regardless of their shape have to be taken into account. With use
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Figure 3: Visualisation of IVFS Â. Footprint Of Uncertainty (FOU) is indicated by shaded
region. Dotted and dashed lines represent embedded sets A1 and A2, respectively.
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Figure 4: Visualisation of embedded fuzzy sets that reach the lower (dashed line) and upper
(dotted line) bounds of the t-norm based interval-valued relative cardinalities induced by the
minimum (left), product (middle) and  Lukasiewicz (right) t-norms. Shaded regions represent
Footprint Of Uncertainty (FOU) of input IVFSs.

of numerical optimisation we can calculate that

σ̂fid,tmin
(Â|Â) = [0.614, 1] . (11)

In general, interval σ̂fid,tmin
(Â|B̂) consists of all possible values obtained

for any pair of embedded fuzzy sets of Â and B̂. The basic problem with
determining the interval–valued relative cardinality defined in this way is finding
the right A ∈ FOU(Â) and B ∈ FOU(B̂) that minimise and maximise σf,t(A|B).
In general, these A and B are not simply equal to A,A or B,B. Some possible
shapes of A and B, for σ̂f,t with minimum, product and  Lukasiewicz t-norms,
are depicted in Fig. 4. Notice that A and B are not uniquely determined. For
example, such a situation may occur for t-norms which attain a constant value
over a range of arguments (such as nilpotent t-norms).

The next section presents the effective method of computing interval-valued
relative cardinality parameterised with t-norms. The need and importance of
considering different t-norms may be justified analogously as it was done in
Section 3.1 since the Wavy-Slice Representation Theorem guarantees that the
properties mentioned for fuzzy sets find their counterparts in the case of IVFSs.
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4. Computing interval–valued relative cardinalities of IVFSs

The main problem with the interval-valued relative cardinality of IVFSs de-
fined in Definition 1 is its computational cost. Formula (9) is computationally
inefficient because FOU(Â) and FOU(B̂) are infinite sets. In the general case,
computing σ̂f,t(Â|B̂) is equivalent to performing interval computations on non-
linear functions, which is an NP-hard problem [54].

There are several papers which address this problem only in the cases of
particular t-norm and the identity weighting function. The exhaustive algorithm
presented by Rickard et al. for the minimum t-norm is not efficient [50]. Nguyen
and Kreinovich [38] showed that computation of σ̂f,t(Â|B̂) can be effective in
the case of fid and tmin. They proposed algorithms for computing a lower bound
of σ̂fid,tmin

(Â|B̂) in O(n · log n) and an upper bound in O(n) operations. Later,
Wu and Mendel proposed another algorithm for computing lower bound with
complexity O(n1+α), where α is a very small positive number [55]. An efficient
solution for the case of the product t-norm has also been developed [56]. In
this case, computing both the lower and upper bound of σ̂fid,tprod(Â|B̂) requires
O(n · log n) operations. We observed that the optimisation problem that must
be solved to calculate the interval–valued relative cardinality for product t-norm
is the same as the problem solved by Karnik–Mendel Algorithms for computing
IT2FS centroid [25].

4.1. Problem reformulation

Formula (9) can be rewritten in the following way:

σf,t(Â|B̂) = min
a
i
≤ai≤ai

bi≤bi≤bi

∑n
i=1 f(t(ai, bi))∑n

i=1 f(bi)
(12)

and

σf,t(Â|B̂) = max
ai≤ai≤ai
b
i
≤bi≤bi

∑n
i=1 f(t(ai, bi))∑n

i=1 f(bi)
. (13)

The arguments of min and max operators can be treated as a function of n
variables b1, · · · , bn which is non-decreasing with respect to ai. For this reason
(see also [38, 57]) the above formulas can be simplified to

σf,t(Â|B̂) = min
bi≤bi≤bi

∑n
i=1 f(t(ai, bi))∑n

i=1 f(bi)
(14)

and

σf,t(Â|B̂) = max
b
i
≤bi≤bi

∑n
i=1 f(t(ai, bi))∑n

i=1 f(bi)
, (15)

where ∀1≤i≤n 0 ≤ bi ≤ bi ≤ 1, and the t-norm t as well as the weighting
function f are continuous. For simplicity, where it does not lead to ambiguity,
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we denote σf,t(Â|B̂) and σf,t(Â|B̂) by y and y. Such a problem definition will
be used in the rest of the paper where the general question of calculation of the
relative cardinality of IVFSs using other t-norms and weighting functions will
be considered.

4.2. The Nguyen–Kreinovich and Karnik–Mendel algorithms

The Nguyen–Kreinovich (NK, [38]) algorithms for tmin and fid and Karnik–
Mendel (KM, [25]) algorithms for tprod and fid will now be discussed in more
detail. To shorten the discussion, only the algorithms for computing the lower
bounds σf,t(Â|B̂) will be presented. The algorithms for upper bounds are sim-
ilar and are based on the same approach. More details can be found in the
source papers.

We want to show that these two algorithms, although meant for solving
two different problems, and despite the significant differences in the original
notation, generally share the same basis. This is the starting point for the
construction of our algorithm, which is the main result presented in this paper.
For both algorithms, we present pseudo-code taken from later works [26, 55].
This is because the algorithms were originally given only in a descriptive manner.
For clarity, in both cases the pseudo-code omits most of the optimisation tricks
proposed in both the original and later works. Moreover, the structure of the
pseudo-code has been modified for ease of comparison. Both the algorithms are
listed in Algorithm 1.

Although the NK and KM algorithms are very similar, there are some dif-
ferences. We will discuss the most important ones. First, those two algorithms
differ in iteration structure. Both of them execute the loop body until the cur-
rent y value decreases. The NK algorithm performs a linear search for the point
where a minimum is attained, and partial results are calculated for consecutive
values of k. The KM algorithm is more similar to a binary search. It jumps be-
tween different values of k in the search for the optimum. This difference causes
a change in the average number of iterations. However, both algorithms require
O(n) iterations in the worst case. Each of these approaches can be converted
to the other with little effort.

The next difference is the expression according to which the values ai, bi and
bi are ordered. The NK algorithm uses

pNK
i =

min(ai, bi)−min(ai, bi)

bi − bi
, (16)

while the KM algorithm uses pKM
i = ai, which is much simpler. These two

expressions have a common source. Consider the following expression:

p∗i =
t(ai, bi)− t(ai, bi)

bi − bi
, (17)

which, in the case where t is the product t-norm, reduces to pKM
i = ai.
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Algorithm 1 A pseudo-code of Nguyen and Kreinovich (left) and Karnik–
Mendel (right) algorithms for computing σfid,tmin

and σfid,tprod .

1: Renumber ai, bi and bi so that
(min(ai, bi) − min(ai, bi))/(bi − bi)
are sorted in ascending order

2: for 1 ≤ i ≤ n do

3: bi ← bi
4: end for

5: y′ ←
∑n

i=1
min(ai,bi)∑n

i=1
bi

6: k ← 0
7: repeat
8: y ← y′

9: k ← k + 1

10: bk ← bk

11: y′ ←
∑n

i=1
min(a

i
,bi)∑n

i=1
bi

12: until y′ < y and i ≤ n
13: return y

1: Renumber ai, bi and bi so that ai
are sorted in ascending order

2: for 1 ≤ i ≤ n do

3: bi ←
b
i
+bi
2

4: end for

5: y′ ←
∑n

i=1
a
i
bi∑n

i=1
bi

6: Find k′ such that ak′ < y ≤ ak′+1

7: repeat
8: y ← y′

9: k ← k′

10: Find k′ such that p
k′

< y ≤ p
k′+1

11: bi ←

{
bi if i > k

bi if i ≤ k

12: y′ ←
∑n

i=1
aibi∑n

i=1
bi

13: until y′ < y
14: return y

After renumbering, both the algorithms ensure that in each iteration

bi =

{
bi if i > k

bi if i ≤ k
(18)

for some k. This allows us to conclude that the optimal solution always has the
following form

y =

∑k
i=1 t(ai, bi) +

∑n
i=k+1 t(ai, bi)∑k

i=1 bi +
∑n
i=k+1 bi

, (19)

where t is either the minimum or the product t-norm. From this equation, it
can be seen that both algorithms are looking for the value of k at which the
result is optimal. Moreover, after minor optimisations, both algorithms have
the same complexity O(n · log n), where the most costly operation is the sorting
in the first step.

4.3. Algorithms for t-norms with u-property

The observation that similar algorithms solve the problem of t-norm based
relative cardinality for two different t-norms was the main motivation to in-
vestigate the possibility of applying the same reasoning to a broader family of
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t-norms. The aim was to solve the problem defined in (14) and (15), which is
the most general version of t-norm based relative cardinality for IVFSs.

The first observation was the need to generalise the value of p∗i . This plays
a key role in the operation of both algorithms, indicating the order in which the
elements of the domain are considered. It determines the impact of a particular
item on the final result. Low values lead to a reduction in the final result,
while high values cause it to increase. Therefore, in the case of minimisation,
the smallest possible value of pi should be found. Similarly, in the case of
maximisation, the largest possible value of pi should be found. This leads to
the definition of the following two values:

p
i

= inf
bi<b≤bi

f(t(ai, b))− f(t(ai, bi))

f(b)− f(bi)
, (20)

and

pi = sup
b
i
<b≤bi

f(t(ai, b))− f(t(ai, bi))

f(b)− f(bi)
. (21)

Since the problems of minimising and maximising can be considered separately,
without loss of generality it is assumed further that the elements ai, ai, bi and
bi are ordered so that p

i
≤ p

i+1
in the case of minimisation and pi ≥ pi+1 in the

case of maximisation. In this way, the domain elements that have the greatest
impact on the final result are the first ones, regardless of the problem under
consideration.

The next step was to generalise the property (19). The results are presented
in the following theorems.

Theorem 1. If a weighting function f and t-norm t are continuous, and ai,
ai, bi and bi are ordered so that p

i
≤ p

i+1
, then there exists k and for each i ≤ k

there exists ui such that bi < ui ≤ bi and

y =

∑k
i=1 f(t(ai, ui)) +

∑n
i=k+1 f(t(ai, bi))∑k

i=1 f(ui) +
∑n
i=k+1 f(bi)

. (22)

Theorem 2. If the weighting function f and t-norm t are continuous, and ai,
ai, bi and bi are ordered so that pi ≥ pi+1, then there exists k and for each i ≤ k
there exist ui such that bi < ui ≤ bi and

y =

∑k
i=1 f(t(ai, ui)) +

∑n
i=k+1 f(t(ai, bi))∑k

i=1 f(ui) +
∑n
i=k+1 f(bi)

. (23)

Proofs are given in Appendix.

These theorems reduce minimisation or maximisation to the problem of find-
ing an optimal switch point k. This is a very similar result as in the case of the
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NK and KM algorithms, but with one additional problem. These theorems do
not provide any information on how to determine the values of ui and ui. For
fid and tmin or tprod we had ui = bi, as in the NK and KM algorithms discussed
earlier. It should be noted that in general, finding these values exactly is nearly
as difficult as solving the original problem. For this reason it is necessary to
impose some restrictions on the t-norm and weighting function. Hence we in-
troduce the concept of u-property, which significantly limits the variability of
the values of ui and ui. This, in turn, will help us to determine their values and
allow them to be calculated.

Definition 2. A pair of functions (t, f), where t is a t–norm and f is a scalar
cardinality weighting function, has the u-property if for all a, b, b, b ≤ b there
exist u and u such that

∀0≤m≤M arg min
b<b≤b

m+ f(t(a, b))

M + f(b)
∈ {u, b} (24)

and

∀0≤m≤M arg max
b<b≤b

m+ f(t(a, b))

M + f(b)
∈ {u, b} . (25)

Sometimes, for brevity, we will say that the t-norm t has the u-property, by
which we mean that the pair of functions (t, fid) has the u-property.

Theorem 3. If the pair of functions (t, f) has the u-property then

ui = arg min
bi<b≤bi

1 + f(t(ai, b))

1 + f(b)
(26)

and

ui = arg max
b
i
<b≤bi

1 + f(t(ai, b))

1 + f(b)
. (27)

Proof is given in Appendix.

Theorem 3 allows us to make the first step towards calculation of the t-norm
based interval–valued relative cardinality. Focusing on the class of pairs with the
u-property allows a significant simplification while maintaining applicability to
important practical problems. New algorithms will be presented for computing
y and y in the case of t-norms and weighting functions with u-property. The
algorithms use the values p

i
, pi, ui and ui defined earlier. These values can

be computed numerically, or (for greater efficiency) precalculated for a specific
t-norm and weighting function. In Table 1 we provide specific values of these
parameters for popular t-norm families and weighting functions.

A procedure for computing y is given by Algorithm 2. An algorithm for
computing y is very similar. There are only few differences. First of all, in the
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Algorithm 2 Algorithm for computing y.

1: Renumber ai, bi and bi so that p
i

are sorted in ascending order
2: k′ ← bn/2.4c

3: m←
k′∑
i=1

f(t(ai, ui)) +
n∑

i=k′+1

f(t(ai, bi))

4: M ←
k′∑
i=1

f(ui) +
n∑

i=k′+1

f(bi)

5: y ← m
M

6: repeat
7: k ← k′

8: k′ ← Find k′ such that p
k′
< y ≤ p

k′+1

9: s← sign(k′ − k)

10: m← m+ s
max(k,k′)∑

i=min(k,k′)+1

(f(t(ai, ui))− f(t(ai, bi)))

11: M ←M + s
max(k,k′)∑

i=min(k,k′)+1

(f(ui)− f(bi))

12: y ← m
M

13: until k′ 6= k
14: return y

case of y, p
i

and ai are replaced by pi and ai respectively. Moreover, in the first
step pi are sorted in decreasing order and the direction of the inequalities in steps
1 and 8 is changed. Generally, both algorithms operate on the same principle
as in the case of the KM algorithm (using the generalised values of ui and pi).
Neglecting the extra effort required for numerical optimisation (which should be
avoided and replaced by precomputation where possible), both algorithms have
the computational complexity O(n log n). The most expensive step is the first
one, because it involves sorting. Afterwards the algorithm performs at most n
iterations, each with a fixed number of operations.

The following theorem provides much simpler conditions which ensure that
a pair (t, f) has the u-property.

Theorem 4. A pair of functions (t, f), where t is a t–norm and f is a weighting
function, has the u-property if f and t are continuous, f is strictly increasing,
and for all a and b there exist q ≥ b and α > 0 such that t and f are differentiable
in (q, 1] (t in first variable, partial derivative is denoted by t′b) and

1.

∀b<b≤q pa,b(b) =
f(t(a, b))− f(t(a, b))

f(b)− f(b)
= α , (28)

2.

∀q≤b≤1 t′b(a, b) = 0 or
(f ◦ t)′b(a, b)

f ′(b)
≥ 1 (29)
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Figure 5: Two possible shapes of pa,b for a pair (t, f) satisfying Theorem 4.

The proof is given in Appendix.

The intuition behind this theorem in the case of the identity weighting function
is that a t-norm for which pa,b(b) is constant up to some point, and where
beyond that point t-norm t either increases rapidly enough or is constant, has
the u-property. These two cases are presented in Fig. 5. Observe that

p
i

= inf
bi<b≤bi

p a
i
,b
i
(b) , and pi = sup

bi<b≤bi
p ai,bi(b) . (30)

Some (t, f) pairs that fulfil the above conditions, and thus have u-property, are
presented by the following examples.

Example 1 (Minimum t-norm). Let f : [0, 1] → [0, 1] be any continuous
and increasing weighting function. First of all pa,b needs to be computed; this
is given by

pa,b(b) =


1 if b < b ≤ a
f(a)−f(b)
f(b)−f(b) if b < a < b

0 if a < b < b

. (31)

To show the u-property we need to consider two possible cases. In the first one,
if a < b then pa,b(b) is constant and equals 0 (α = 0 and q = 1). Note that
there is no need to check the second condition, since there is no such q < b ≤ 1.
In the second case (a ≥ b), α = 1 and q = a. A plot of pa,b is given in Fig. 6.
Moreover for b > a

[f(tmin(a, b))]′b = [f(tmin(a, b)]′b(tmin(a, b))′b = 0 . (32)

This reasoning leads to the conclusion that the pair (tmin, f) has the u-property
for any continuous and increasing weighting function f .

Both algorithms require values of p
i
, pi, ui and ui which can be calculated

directly (see Table 1). This result is more general than the original NK al-
gorithm, because relative cardinality can be calculated for any continuous and
strictly increasing weighing function.
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Figure 6: Shape of pa,b, depending on the t-norm used.

Example 2 (Product t-norm). The pair (tprod, fid) has u-property. In this
case pa,b(b) = a, so it is constant, giving α = a and q = 1, which proves

u-property. Moreover p
i

= bi, pi = bi, ui = ai and ui = ai.

Example 3 (Sugeno–Weber t-norms). The Sugeno–Weber t-norm family
is defined for each λ > −1 by the following formula

tSWλ (a, b) = max

(
0,
a+ b− 1 + λab

1 + λ

)
. (33)

To check whether a pair (tSWλ , fid) has the u-property, we need to investigate
the value of pa,b(b) given by

pa,b(b) =


1+λb
1+λ if 1−a

1+λa < b

0 if b < b < 1−a
1+λa

1− (1−a)−b(1+λa)
(1+λ)(b−b) if b < 1−a

1+λa < b

. (34)

There are two possible cases. In the first one, when (1− a)/(1 + λa) < b, the
quotient is constant and equals (1 + λa)/(1 + λ) resulting in α = (1 + λa)/(1 + λ) and
q = 1. In the second case ((1− a)/(1 + λa) ≥ b), α = 0 and q = (1− a)/(1 + λa).
Moreover for b > (1− a)/(1 + λa)

tSW
λ
′
b(a, b) =

(
a+ b− 1 + λab

1 + λ

)′
b

=
1 + λa

1 + λ
. (35)

Because (1 + λa)/(1 + λ) > 1 only if λ < 0, this proves that (tSWλ , id) has u-
property when −1 < λ ≤ 0. Observe that for λ = 0 tSW0 becomes a  Lukasiewicz
t-norm which for this reason also has the u-property.

Table 1 lists the parameters required by both algorithms in the case of the
identity weighting function, for the most common t-norms. Figure 6 contains
plots of pa,b for those t-norms.
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t-norm cλi cλi < ai ai ≤ cλi < ai ai ≤ cλi
p
i bi

0
b
i
−a

i

ai−ai
1

Minimum ui ai ai ai

tmin pi bi
0 1 1

ui ai bi ai

p
i -

bi
Product ui ai

tprod pi -
bi

ui ai

p
i 1− bi

1 0 0

 Lukasiewicz ui ai 1− bi ai

t Luk pi 1− bi
1 ai+bi−1

ai−ai
0

ui ai ai ai

p
i

1−b
i

1+λbi

1+λbi
1+λ 0 0

Sugeno–Weber ui ai
1−bi

1+λb
i

ai

tSW
λ , λ ∈ (−1, 0) pi 1−bi

1+λbi

1+λbi
1+λ

tSWλ (ai,bi)
ai−ai

0

ui ai ai ai

p
i λ

√
1− bλi

1 0 0

Schweizer–Sklar ui ai
λ

√
1− bλi ai

tSS
λ , λ ≥ 1 pi λ

√
1− bλi

1
λ
√
aλi +b

λ

i −1

ai−ai
0

ui ai ai ai

Table 1: Parameters required by the algorithms for the most common t-norms.

It may be noted that in some cases p
i

or pi attains only two values: 0
or 1. For example, this occurs in the case of the minimum t-norm for the
upper bound. Nguyen showed that in this situation it is possible to calculate
the relative cardinality directly without sorting [38]. Similar reasoning can be
applied to the t-norm based relative cardinality when p

i
or pi takes only the

two extreme values.

4.4. General solution for t-norms without u-property

Unfortunately, not all t-norms have the u-property, and so further inves-
tigation is required into the problem of calculating the t-norm based relative
cardinality in this case. The u-property imposes a strict constraint on the val-
ues of ui and ui from Theorems 1 and 2, making it possible to treat individual
values of ui and ui independently. If a t-norm does not have u-property, the
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problem of finding ui and ui, and thus the exact value of the relative cardinality,
becomes much more harder.

Theorems 1 and 2 guarantee the existence of ui and ui. Let us now examine
their properties more closely. For each i ≤ k, the ith element may be taken
outside the sum in following way

y =

f(t(ai, ui)) +
∑k
j=1
i6=j

f(t(aj , uj)) +
∑n
j=k+1 f(t(aj , bj))

f(ui) +
∑k
j=1
i 6=j

f(uj) +
∑n
j=k+1 f(bj)

. (36)

Because y minimises the whole expression, we can observe that

ui = arg min
b
i
<b≤bi

f(t(ai, b)) +
∑k
j=1
i 6=j

f(t(aj , uj)) +
∑n
j=k+1 f(t(aj , bj))

f(b) +
∑k
j=1
i 6=j

f(uj) +
∑n
j=k+1 f(bj)

. (37)

Thus, each ui depends on all the other uj .
The proposed approach to this problem involves the construction of a recur-

sive equation for the value ui and an iterative algorithm that will approximate
it. The equation is easily derived from (37)

u
(l+1)
i = arg min

b
i
<b≤bi

f(t(ai, b)) +
∑k
j=1
i 6=j

f(t(aj , u
(l)
j )) +

∑n
j=k+1 f(t(aj , bj))

f(b) +
∑k
j=1
i6=j

f(u
(l)
j ) +

∑n
j=k+1 f(bj)

, (38)

with initial values

u
(0)
i =

{
bi if i > k

bi if i ≤ k
. (39)

It should be noted that in this equation u
(l+1)
i does not depend directly on u

(l)
i .

However, there is an indirect dependence on u
(l−1)
i through other u

(l)
j . The use

of this recursive equation does not guarantee that the correct value of ui will be
obtained. However, as has been shown in an extensive evaluation, it converges
very quickly to the optimal solution. Of course, the above reasoning can also
be applied for ui, giving analogous results.

The main goal when designing the algorithm for computing t-norm based
relative cardinality for t-norms without u-property was to integrate the recursive
equation within the algorithms proposed in the previous section. The basic
principle is to execute Algorithm 2 iteratively until the change in the resulting
value is negligibly small (less than a given ε). The pseudo-code of the algorithm
for computing lower bound is given in Algorithm 3. As in the previous section,
algorithm for computing y is very similar.
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Algorithm 3 Approximate algorithm for computing y.

1: Renumber ai, bi and bi so that p
i

are sorted in ascending order
2: k′ ← bn/2.4c

3: m←
k′∑
i=1

f(t(ai, ui)) +
n∑

i=k′+1

f(t(ai, bi))

4: M ←
k′∑
i=1

f(ui) +
n∑

i=k′+1

f(bi)

5: y′ ← m
M

6: repeat
7: y ← m

M
8: repeat
9: k ← k′

10: k′ ← Find k′ such that p
k′
< y ≤ p

k′+1

11: s← sign(k′ − k)

12: m← m+ s
max(k,k′)∑

i=min(k,k′)+1

(f(t(ai, ui))− f(t(ai, bi)))

13: M ←M + s
max(k,k′)∑

i=min(k,k′)+1

(f(ui)− f(bi))

14: y ← m
M

15: until k′ 6= k
16: e← |y′ − y|
17: y′ ← y
18: until e < ε
19: return y

5. Evaluation

The proposed approximate algorithms were subjected to extensive evalua-
tion. Five test sets for different domain sizes (n = 3, 5, 10, 25, 100) were used.
Each of them consisted of 480000 pairs of different interval-valued fuzzy sets. It
was ensured that each test set contained IVFSs with different shapes of mem-
bership function (Trapezoid, Gaussian, Bell, Sigmoid, and generated randomly)
in the same proportions. Moreover, different degrees of intersection of those
IVFSs were chosen.

Both algorithms were implemented in Java. Due to the finite numerical
accuracy, some programming-language-specific optimisations were applied. The
values of p

i
, pi and ui, ui used in the algorithms were calculated numerically

using the Brent method [58]. In addition, it was necessary to add protection
against an infinite loop caused by inaccurate values of p

i
or pi. IVFS pairs for

which this problem occurred were excluded from the test set. The algorithm
implementation as well as test script is publicly available at http://min.wmi.

amu.edu.pl/en.
The test involved the Dombi, Frank, Hamacher, Schweizer–Sklar, Sugeno–
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Weber and Yager t-norm families with different values of parameters. Three
basic t-norms – minimum, product and  Lukasiewicz – were also directly in-
cluded in the test. All t-norm based relative cardinalities were computed using
the identity weighting function and ε = 10−6. To enable comparison of the
results, all of the relative cardinalities (also for the t-norms with u-property, for
which precalculation is possible) were computed using the same algorithm im-
plementation based on numerical optimisation. No optimisation specific to any
particular t-norm was used. For each t-norm, separately for the lower and upper
bound, the average and maximum running time in milliseconds, the number of
main loop iterations and the number of inner loop iterations were measured. De-
tailed results are presented in supplementary materials attached to this paper.
Here we will only summarise them.

For all t-norms with the u-property, both algorithms perform at most two
main loop iterations. This means that in this case the approximate algorithms
reduce to those for t-norms with the u-property. This is a very important charac-
teristic, which makes it possible to use the approximate algorithms in all cases,
even when the u-property condition is met, without any substantial decrease
in performance. This can be easily observed in the case of Schweizer–Sklar t-
norms. The number of iterations necessary to compute the lower bound of the
relative cardinality in this case varies significantly depending on whether λ is
smaller or larger than 1 (for λ ≥ 1 this t-norm has the u-property).

Generally, an average number of iterations is very small for both algorithms.
There is no t-norm which on average required more than 3 iterations of the
outer loop and 5 of inner loop. It seems that the calculation of the upper
bound is somewhat simpler. However, no reason was found for this. Average
computing time differs depending on the t-norm (from 3.42ms for product t-
norm and 4.49ms for t-norm minimum to nearly 100ms for some Yager t-norms),
despite a similar number of iterations. This is due to the computational effort
associated with Brent optimisation. Some t-norms are much simpler to optimise
than others. The maximum number of iterations for the majority of t-norms
also did not differ significantly from the average. An interesting observation
is that for certain t-norms it is easier to determine the upper or lower bound.
This is especially evident in the case of the maximum number of iterations for
the Hamacher and Frank t-norms. For λ < 1 computing the upper bound is
considerably easier than the lower, while for λ > 1 computing the lower bound
requires fewer iterations than the upper.

In some cases the algorithm converges even in the first iteration, which
may be confusing. This happens when the first iteration does not improve the
solution, which is possible for some IVFSs and t-norms. There are two cases
when this can happen. First, the initial value of k may be the optimal one.
In addition, for some t-norms (especially nilpotent ones) it is possible that no
matter which point is chosen from the interval [bi, bi], the resulting value of the
relative cardinality does not change significantly. For example, the  Lukasiewicz
t-norm may be zero even if one of the arguments is greater than 0.5, which may
lead to such behaviour.

As has been observed by Wu [26], proper setting of the initial value of k
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can significantly affect the number of inner iterations needed to achieve the
final result. Wu and Nie [59] in their paper provide better estimate for the
initial value for the KM algorithm. They indicated n/2.4 as the optimum initial
value in the case of the product t-norm. The average value of the final k in
our evaluation is 41.92 (for n = 100), which gives n/2.39 as the optimal initial
k for the product t-norm. This very similar value confirms the methodology of
evaluation. However, it turns out, that in the case of a relative cardinality it is
difficult to develop a initialisation strategy effective for all t-norms. Generally,
the average final value of k should be used to calculate the optimal initial value
of k. We highly recommend to adjust k′ value according to used t-norm and
its parameters either by computer simulation or by using values gathered in
the supplement. Moreover it can be observed from the evaluation results that
average final k values are sometimes very different for the lower and upper
bounds of relative cardinality. Thus it is reasonable to consider separate initial
values for the two algorithms.

6. Conclusions and further research

The main contribution of the present work is the set of algorithms for ef-
ficient calculation of the t-norm based relative cardinalities of IVFSs, given in
Section 4. We considered the most important classes of t-norms, concluding
that the u-property determines which algorithm should be chosen to solve a
given problem. Our approach fully coincides with earlier solutions given by the
Nguyen–Kreinovich and Karnik–Mendel algorithms, which are special cases of
our algorithms. We believe that our systematic and comprehensive algorithmic
study has thrown new light on the still open problem of effectiveness of calcu-
lation on IVFSs. A still outstanding task is to make a thorough mathematical
analysis of approximate algorithms. A very good starting point for such research
is the recent paper by Han and Liu that shows the global convergence of the
KM algorithm [60]. Moreover, some results of the evaluation of the algorithms
suggest the possibility of a stronger version of the u-property.

Since the relative cardinality of IVFSs can be effectively obtained, the next
step is to explore areas of its practical application and possible interpretations.
Although the classical relative cardinality based on the minimum t-norm can
serve as a subsethood measure, this appears not to be true for some other t-
norms. For example, for the product and  Lukasiewicz t-norms, we probably
need to look for another interpretation of t-norm based relative cardinality, and
this must be done for both fuzzy and interval-valued fuzzy sets. Since rela-
tive cardinality was originally based on conditional probability, the problem of
t-norm selection may be approached similarly as in the recent work of Yager
[61]. We have initiated research on this topic by noting that a t-norm based
relative cardinality with Schweizer–Sklar t-norms has an interesting property of
being more restrictive than that based on the minimum t-norm. This suggests
that t-norm based relative cardinality can be used to obtain a family of param-
eterised subsethood measures with features that are desirable for some practical
problems. The first premise in this direction is the use of proposed algorithms
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in ovarian tumor diagnosis support system [9, 14]. The system consists of clas-
sification module with similarity measure based on IVFS relative cardinality.
Further applications are the subject of our current research. It should also be
noted that the results obtained for IVFSs may also be valid for general type-2
fuzzy sets, as has been shown in the case of the Karnik–Mendel algorithms [62].

Appendix A.

Proof of Theorems 1 and 2. Proofs of Theorems 1 and 2 are analogous so,
we will show only the first one. We will prove it in two steps. First we will
prove the existence of some points b∗i at which

y =

∑n
i=1 f(t(ai, b

∗
i ))∑n

i=1 f(b∗i )
. (A.1)

Then we will show that under the assumptions of the theorem, the required
conditions are met by those values.

As was stated in the main part of the paper, y =

∑n

i=1
f(t(ai,bi)∑n

i=1
f(bi)

can be treated

as a function of n variables b1, · · · , bn which is non-decreasing with respect to
ai. For this reason (see also [57]) the formula for y can be simplified:

y = min
∀bi∈[bi,bi]

∑n
i=1 f(t(ai, bi))∑n

i=1 f(bi)
. (A.2)

Moreover, this function is continuous except in the degenerated case when
f(bi) = 0 for all 1 ≤ i ≤ n. Thus, as for any continuous function on a com-
pact set, the global minimum y is attained for some b∗1, · · · , b∗n. Therefore the
existence of these points has been proved.

We define the projection of y on the ith variable ri : [bi, 1]→ [0, 1]

ri(bi) =

n∑
j 6=i

f(t(aj , b
∗
j )) + f(t(ai, bi))

n∑
j 6=i

f(b∗j ) + f(bi)
=
mi + f(t(ai, bi))

Mi + f(bi)
(A.3)

Next we try to determine when b∗i > bi. This happens whenever ri(b
∗
i ) < ri(bi),

which after transformation is equivalent to

f(t(ai, b
∗
i ))− f(t(ai, bi)

f(b∗i )− f(bi)
<
f(t(ai, bi)) +mi

f(bi) +Mi
. (A.4)

Note that (A.4) is satisfied if and only if p
i
< y. For this reason values of p

i
greater than 1 can be truncated since y is always less than or equal to 1.

From these observations, we can conclude that b∗i > bi only if p
i
< y, oth-

erwise b∗i = bi. Assuming that the p
i

are arranged in ascending order, i.e.
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p
1
≤ p

2
≤ · · · ≤ p

n
, there exists k such that y can be expressed in the following

way:

y =

∑k
i=1 f(t(ai, b

∗
i )) +

∑n
i=k+1 f(t(ai, bi))∑k

i=1 f(b∗i ) +
∑n
i=k+1 f(bi)

. (A.5)

Indeed, there are three possible cases and in each of them it is possible to
determine the value of k:

• k = 0, whenever y < p
1
,

• k = j, whenever p
j
< y ≤ p

j+1
for some j,

• k = n, whenever p
n
< y.

To complete the proof, we define ui for i ≤ k as follows: ui = b∗i .

Proof of Theorem 3. This theorem follows from a direct application of the
projection from proof of Theorems 1 and 2 to the Definition 2. For simplicity
only the first part will be shown. Let k and ui be as in Theorem 1. Using the
projection from (A.3), it is easy to see that for each i ≤ k

y = ri(ui) =
mi + f(t(ai, ui))

Mi + f(ui)
, (A.6)

where mi =
∑k
i 6=j f(t(aj , uj)) +

∑n
j=k+1 f(t(aj , bj) and Mi =

∑k
i6=j f(uj) +∑n

j=k+1 f(bj). Thus, ui is the value that minimises this expression, so it is
possible to write

y = min
bi<b≤bi

ri(b) = min
bi<b≤bi

mi + f(t(ai, b))

Mi + f(b)
. (A.7)

This in turn gives that

ui = arg min
bi<b≤bi

mi + f(t(ai, b))

Mi + f(b)
. (A.8)

Now it is possible to use the u-property, which states that

arg min
bi<b≤bi

mi + f(t(ai, b))

Mi + f(b)
= arg min

bi<b≤bi

1 + f(t(ai, b))

1 + f(b)
, (A.9)

and hence

ui = arg min
bi<b≤bi

1 + f(t(ai, b))

1 + f(b)
. (A.10)

Proof of Theorem 4. Let a, b, q and α be as in Theorem 4, and let b be
any number such that b ≤ b. We need to prove that a given pair of t-norm and
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weighting function satisfying (28) and (29) has the u-property. To do this we
will consider directly the properties of

m+ f(t(a, b))

M + f(b)
,

which is denoted further by r(b). Let us determine the monotonicity of r(b)
separately in both intervals (b, q] and [q, 1].

In the first part we consider the following transformation:

r(b)− r(b) =
m+ f(t(a, b))

M + (b)
− m+ f(t(a, b))

M + f(b)

=
f(b)− f(b)

f(b) +M

[
f(t(a, b))− f(t(a, b))

f(b)− f(b)
− m+ f(t(a, b))

M + f(b)

]
. (A.11)

By (28), this shows that in the interval (b, q]

r(b) = λ1h(b) + λ2 , (A.12)

where

h(b) =
f(b)− f(b)

f(b) +M
(A.13)

and λ1 and λ2 are constants defined as

λ1 =α− m+ f(t(a, b))

M + f(b)
= α− r(b) , (A.14)

λ2 =
m+ f(t(a, b))

M + f(b)
= r(b) . (A.15)

Observe that h(b) is always increasing, thus in this case r(b) is decreasing if and
only if λ1 < 0 and is non decreasing otherwise. Observe that λ1 depends on
both m and M .

On the other hand r(b) in the interval (q, 1] is also monotonic. To simplify
further our considerations, we denote f(t(a, b)) by tf,a(b). From the assumptions
we know that tf,a is differentiable in (q, 1], and so is r(b):

r′(b) =
(M + f(b)) t′f,a(b)− (m+ tf,a(b)) f ′(b)

(M + f(b))
2 . (A.16)

To check whether r(b) is increasing or decreasing, we need to determine when
its derivative is greater or less than 0. After routine transformations we find
that r(b) is increasing whenever

t′f,a(b)

f ′(b)
≥ m+ tf,a(b)

M + f(b)
= r(b) , (A.17)
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α
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Figure A.7: Shape of the r(b) in second (lower line) and third (upper line) case.

and decreasing whenever

tf,a(b)

f ′(b)
≤ m+ tf,a(b)

M + f(b)
= r(b) . (A.18)

Because r(b) always lies between 0 and 1, we can conclude that r(b) is increasing
when

t′f,a(b)

f ′(b)
≥ 1 (A.19)

and decreasing when
t′f,a(b)

f ′(b)
= 0 (A.20)

which because f is increasing reduces further to

t′f,a(b) = 0 . (A.21)

This corresponds to the second assumption of the theorem (29). So as a conse-
quence, we know that r(b) is increasing or decreasing in (q, 1].

Finally we have got four options:

1. r(b) is not decreasing in the (b, q] and increasing in the (q, 1],

2. r(b) is not decreasing in the (b, q] and decreasing in the (q, 1],

3. r(b) is decreasing in the (b, q] and increasing in the (q, 1],

4. r(b) is decreasing in the (b, q] and (q, 1].

We need to prove that values of arg min and arg max may achieve only two
possible values when m and M change. Of course, those values may still depend
on other parameters such as a or b. In the first and last case it is easy to see that
minimum and maximum are always attained on boundaries (r(b) is increasing
or decreasing in whole its domain). Thus arg min and arg max are always equal
to either b or b. The remaining two cases are depicted on Fig A.7. In the second
case global minimum may be either in b or b and global maximum is attained
in q or b depending whether q ≤ b or not. Similarly, in the third case global
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minimum is attained in q or b depending whether q ≤ b and global maximum
may be either in b or b. Observe that in all cases actual location of extrema
does not depend on either m or M . Hence both arg min and arg max are equal
to either b or other value that do not depend on m and M . This completes the
proof of u-property.
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