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Abstract

This paper presents an approach to making accurate and high-quality deci-
sions under incomplete information. Our comprehensive approach includes
interval modeling of incomplete data, uncertaintification of classical models
and aggregation of incomplete results. We conducted a thorough evalua-
tion of our approach using medical data for ovarian tumor diagnosis, where
the problem of missing data is commonly encountered. The results confirmed
that methods based on interval modeling and aggregation make it possible to
reduce the negative impact of lack of data and lead to meaningful and accu-
rate decisions. A diagnostic model developed in this way proved better than
classical diagnostic models for ovarian tumor. Additionally, a framework in
R that implements our method was created and is available for reproduction
of our results. The proposed approach has been incorporated into a real-life
diagnosis support system — OvaExpert.

Keywords: missing data, uncertainty, aggregation, medical diagnosis,
decision-making

1. Introduction

The aspect of data uncertainty is studied intensively in many contexts and
scientific disciplines, including medicine. Many different forms of uncertainty
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in data have been recognized: one comes from conflicting or incomplete infor-
mation, as well as from multiple interpretation of some phenomenon; another
arises from lack of well-defined distinctions or from imprecise boundaries.
Functioning under uncertainty and ignorance is an everyday experience of
many practitioners, and is impossible to eliminate completely. For example,
in medical practice it has been shown [1, 2] that the collection of complete
data by a physician during examinations can be highly problematic due to
the technical limitations of the healthcare institution, the high costs of a
medical examination or the high risk of deterioration in a patient’s health
after a potential examination. The lack of data hinders the use of traditional
models for diagnosis support, and there is therefore an urgent need to solve
this problem.

One of the possible approaches to managing incompleteness of data is to
exploit well-established methods from the field of data imputation (see [3]).
Undoubtedly in many research areas such an approach is sufficient. How-
ever in medical applications, where human life is at stake, it is not so clear
whether we can introduce new data which may be subject to small but signif-
icant error. Another option is to develop a new model specially dedicated to
incomplete data. However, the multiplicity of already existing models makes
it difficult to select the right one among them, and consequently physicians
are confused and refrain from using any of them. Adding yet another diag-
nostic model would increase complexity in modeling and computation even
further. For these reasons we explore an entirely different path. The main
idea is to construct a general method that makes it possible to adapt and
integrate existing and well-established diagnostic methods to make them us-
able with incomplete data.

A direct motivation of our work was the need to support gynecologists in
diagnosis of ovarian tumor, including in the case of incomplete data. This
type of cancer is particularly difficult to diagnose, and its mortality rates
have remained high for many years ([4]). The main problem is to determine
whether a tumor is malignant or benign based on two groups of parameters:
data from medical history (e.g. age, weight, number of pregnancies) and
diagnostic data (e.g. blood markers, ultrasonography). The research problem
therefore boils down to a binary classification problem.

There are several well-known models in ovarian tumor diagnostics. Some
of them are created by individual research units, such as the Alcazar model
and SM; others by organizations (incorporating a number of research centers),
such as IOTA LR1. The majority are scoring models and models based on



logistic regression. These models attain different levels of effectiveness [5] 6],
generally high on internal data but very often much lower during external
validation. Different models use different patient attributes, and collecting
all of them may be costly and problematic. Moreover, these models are not
prepared for the case where some of the data in the patient description are
missing. Recently, IOTA developed the first model that is able to handle
missing value of one attribute [7]. In this paper we want to propose general
method for handling missing values. The importance of the completeness
and quality of medical data was recently highlighted in [g].

As a result, the ability to diagnose — called diagnosability or decisiveness
— of these models may be low in many practical situations. So far, all research
in this field were made on complete data sets. In consequence the problem of
data incompleteness is not well investigated although it is currently discussed
in medical community [9]. Furthermore, unlike in other classification prob-
lems, there is no clearly defined and widely accepted indicator of the quality
of such a diagnostic model. The most commonly used metrics are the area
under the ROC curve (AUC), accuracy, and sensitivity. However, these do
not reflect all of the aspects of the problem analyzed here; in particular they
do not take into account the level of diagnosability.

In our approach we were able to turn some of the above-mentioned draw-
backs into assets, so as to achieve a solution to the problem of incomplete
data. During the research we noticed that, since the models use different at-
tributes, they complement one another, allowing better decisions to be made.
However, gynecologists were not yet able to take advantage of this fact. To
change this, we developed the idea of creating a decision support system that
would integrate knowledge derived from a number of models, and provide it
in an accessible way to the doctor.

We have developed OvaExpert, a specialist diagnostic system to support
gynecologists, including those less experienced, in the proper differentiation
of tumors. The results presented in this paper answer problems encountered
during work on the OvaExpert system. The system is currently being in-
tensively tested at a number of medical centers. The main objective of the
system is to make accurate decisions despite a lack of data. This is achieved
by interval modeling of incomplete information. The use of the diversity of
diagnostic models allows us to increase the efficiency of diagnosis by aggre-
gating knowledge from many sources. To this end, we implemented a number
of aggregation operators and conducted a set of tests to verify how those op-
erators act on real-life data, both complete and incomplete. By sharing our



work through GitHub, we enable other researchers to verify our results and to
reuse our code for their own purposes. We believe that our results may prove
valuable not only in ovarian tumor diagnosis, but also in other classification
tasks in which the problem of missing and incomplete data is faced.

The remainder of the paper is organized as follows. In Section[2]we present
details of our approach to dealing with data incompleteness, including un-
certaintification of patient descriptions and diagnostic models, and methods
of information aggregation. Section [3| describes an evaluated dataset as well
as the evaluation procedure. In Section [4] the results of our experiments are
presented and discussed. Section [5|emphasizes the significance of our results
by giving a short introduction to their application in the OvaExpert system.
Conclusions appear in Section [6]

2. Proposed approach

The main objective of our approach is to enable effective decision-making,
in spite of missing data. The most obvious approach, based on imputation,
is not feasible here for many reasons. First of all we were limited by the very
small number of cases that could be used as a prior knowledge for effective
imputation. Besides, as has already been mentioned in the previous section,
imputing the results of diagnostic tests, even though it may be correct from a
statistical point of view, can lead to significant diagnostic error. Imputation
can serve as a convenient way of carrying out statistical analyses of a dataset
or a classifier, but it must be clearly stated that imputed data are not the
real one so it may be hazardous to use them for making a diagnosis for
one particular patient. This issue was widely discussed in a recent book by
Hatch [9]. Our primary objective was not to make an illusion of operating on
complete data. We want a doctor to be aware of the incompleteness of the
knowledge about a patient’s state and rather to suggest no diagnosis then
the wrong one. Finally, our ultimate goal is to develop a general method
that deals not only with totally incomplete (missing) data but also with data
complete only to some extent (interval data), for which imputation is not the
answer.

In our research, we adopted the following two assumptions. Firstly, we
accept a state in which a diagnostic model does not return any diagnosis.
This should not happen too often, but in the most difficult diagnostic cases
(or if a significant part of attributes is missing) it may be the only option.
Secondly, we do not intend to create new diagnostic models.



Instead, we enable the use of existing models under missing and incom-
plete data. We base our research on available regression and scoring models.
Theoretical example of such model as well as our approach is illustrated in
the following subsections (Examples 1-4). More details about the models are
given in Subsection (3.1}

2.1. Interval modeling

In a classical approach, a patient is modeled as a vector p in a space P.
Let Dy,..., D, be real closed intervals denoting domains of attributes that
describe patients. We define a set P in the following way P := Dy X ... X D,,.
Then, a vector p that describes a patient has the form p = (p1,p2, ..., Dn),
where p; € D;.

A diagnostic model can be formalized as a function m : P — [0, 1]. The
values returned by the function indicate confidence as regards the malignancy
of a tumor, and are interpreted in the following way:

e m(p) > 0.5 — diagnosis towards malignant (higher values represent
higher confidence);

e m(p) < 0.5 — diagnosis towards benign (lower values represent higher
confidence).

Observe that the situation where m(p) = 0.5 is resolved towards malignancy.

Example 1. For the sake of simplicity, in this example we assume that the
patient is described only by two attributes, namely patient’s age and one can-
cer antigen test. We define the domains of these attributes as Dy = [0, 100]
and Dy = [0,1500]. Consider the following two patients: p* = (35,100) and
p? = (60,1200). Let my : P — [0,1] be a simple example diagnostic model
defined by

m1(p) = 0.0025p; + 0.0005p, .

Now we can easily see that according to diagnostic model my patient A
should be diagnosed as benign (my(p?) = 0.138) and patient B as malig-
nant (my(p?) = 0.75).

The existing diagnostic models operate on complete patient data. In order
to represent missing values we have to add a special element (in practice
commonly denoted by NA) to the domain of each attribute. Thus patient is
now described by a vector p = (p1, ..., pn), where p; € D; U{NA}. A major



disadvantage of this approach is the need to introduce a new, separate value
to represent missing values. This value cannot be handled natively by the
original diagnostic models, which in turn leads to an inability to make any
diagnosis. Therefore we use a different approach in which all the data are
represented in the same, consistent way (cf. [10]).

For each attribute D; we introduce its interval version, defined as the set
of all nonempty closed subintervals of D;

D; =1Zp, = {[a,b] : [a,b] C D;} .

Analogously as before we define P =Dy x Dy x...x D,. Throughout the
reminder of this paper we will consistently use the hat symbol to indicate
interval values in order to distinguish them from numeric ones.

In this model a patient is described by a vector of intervals

B = (b1 i) = ([ Bil o 2,0l

We say that vector p € P is an embedded vector of p € P, denoted by
P € P, when

Vi<i<n Di € Di -
Consequently, for each vector p € P (with or without missing values) we can
define its interval equivalent p € P in the following way:

Di ifpi#NA Di if p, #NA
B Ymind ifp;=NA’ PiT Ymax d ifp, =NA.
deD; deD;

The above definition allows one to describe the value of each attribute
of a patient by an interval, regardless of whether or not the description of
the attribute was given. If the value was not provided then the proposed
representation has the form of a set containing all possible values for the
attribute. If the value was given, it is represented by an interval reduced
to a point. The main advantage of this approach is that all patients can
be described in the same, uniform way and can be processed with the same
diagnostic model.

2.2. Uncertaintification of prediction models

The next step is to enable the diagnostic models to work with the interval
representation of the patient data. We utilize a classical method of extending
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real functions to interval values [11] to obtain a new, uncertaintified diagnos-
tic model m defined as

m(p) = {m(p) : p €£ P} - (2)

The resultant interval represents all of the possible diagnoses that can be
made based on a patient description in which every missing value has been
replaced with all possible values for that attribute. The more incomplete the
description, the more uncertain the diagnosis. However, it is worth noting
that in many cases it is still possible to make a proper decision, since some
amount of missing values is acceptable and will not affect the final result
significantly.

One would expect that the result of reasoning based on an interval rep-
resentation will also be an interval. The value of 7 (P) can also be defined
in interval form

m(p) = {min m(p), max m(p)| . (3)

PEED PEED
These two definitions are equivalent when the original diagnostic model is
continuous (which is the case for models based on linear or logistic regression).
When m is not continuous gives a very good approximation of , and
we therefore adopt as the definition of 7 : P — Zo,)-

Example 2. We will use the diagnostic model from the previous example,
but now some patient data is missing: p* = (35, NA) and p? = (NA, 1200).
According to we define a new interval representation of patients

p* = ([35,35],[0,1500]) , p” = ([0,100], [1200, 1200])
and compute diagnoses from uncertaintified models
i (p?) = {ma(p1, p2) - pr = 35, p» € [0,1500]} = [0.088,0.838]

and analogously 1, (p?) = [0.6,0.85]. It is easy to see that for the first patient
it is hard to make a diagnosis, while for the second, despite the missing data,
we can still say with high confidence that she has a malignant tumor.

2.3. Aggregation of diagnoses

There are many different diagnostic models for ovarian tumor, and we
wish to use this fact to improve the effectiveness of diagnosis. In our pre-
vious research we observed that different diagnostic models use different at-
tributes describing the patient, and are therefore subject to different levels

7



of uncertainty [10]. The main idea is thus to improve the final diagnosis by
taking advantage of the models’ diversity. Given n models mq, mo, ... m, we
construct a function Agg whose result is a new diagnosis that gathers and in-
tegrates information from the input models. Thanks to this interpretation we
immediately see the relationship with the problem of group decision-making
and information aggregation [12]. An n-argument aggregation operator is a
mapping Agg : [0, 1] — [0, 1] with the following properties [13]:

1. ify; < foralli € 1,...,n, then Agg(y1, ..., yn) < Agg(xy, ..., T,),
2. Agg(l,...,1)=1,
3. Agg(0,...,0)=0.

There are four main classes of aggregation operators: averaging, conjunctive,
disjunctive and mixed. A detailed list of aggregation operators used in this
research is given in [Appendix A.1|

We use the interval representation introduced in the previous section.
Thus, instead of numbers we will aggregate intervals. There are two possible
modes of such aggregation. The first, called numerical, uses a single value
that represents the whole interval (the most common choices are the interval’s
center, lower bound and upper bound). The interval mode, on the other
hand, utilizes the whole of the interval information. Recent research has led
to the construction of many aggregation methods, of both numerical and
interval type [14 15 13|, 16]. The most commonly used aggregation methods
in group decision-making are based on the weighted arithmetic mean [12].

Example 3. Continuing the previous examples, assume that there is a new
blood marker (Ds = [0,100]) and it is used in a new diagnostic model

ma(p) = 0.0025p; + 0.0075p; .

New marker results were assessed for both patients with the following results:
p? = (35, NA,5) and pP = (N A, 1200,90). The new diagnostic model (after
uncertaintification) yields o (p?) = [0.125,0.125] and my(pP) = [0.675,0.925].

Having two different pieces of information, we can try to merge them into
a single one which will be more reliable. What we know about the first patient
is that the diagnostic models yielded [0.088,0.838] and [0.125,0.125] as a sug-
gested diagnosis. In this example we will present two modes of aggregation
using a very simple and intuitive aggregation method, namely the arithmetic
mean. In the mode based on numerical evaluation we choose the interval
center as a representative. Calculation gives the following result:
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~1,0.088 +0.838 n 0.125 4 0.125

Agg (1 (p?), ma(p?)) = 2( 5 5 ) =10.294.

Analogously for the second patient

~1,06+0.85 n 0.675 + 0.925

Agg (M (p”),ma(p”)) = 2( 5 5 ) =0.763.

In the mode based on interval evaluation we use interval arithmetic. Calcu-
lation gives the following results:

e 0.088 +0.125 0.838 + 0.125
Agg (i (p), ma(p™)) = { 5 : : } = [0.107, 0.482]
and
g 0.6+ 0.675 0.85 + 0.925
Agg (1 (p7), 2 (")) = [ R — } — [0.638,0.888] .

Thanks to the use of aggregation we have obtained new diagnoses which are
less uncertain and make it easier to take a final decision.

One would expect that the medical diagnosis problem itself imposes some
restrictions on the properties of the aggregation method. For example, if we
make some assumptions about the quality of the original diagnostic models

[17]:

1. All models are reliable — this leads to conjunctive aggregation methods,

2. At least one of the models is reliable — this leads to disjunctive aggre-
gation methods,

3. The models provide independent information — this lead to counting
based methods.

In practice, none of these holds, and the reality is somewhere in between. This
may lead to the conclusion that averaging aggregation operators (which lie
between the conjunctive and disjunctive operator families) can be expected
to be a good solution to this problem. It is also noted that it is preferable to
diagnose doubtful cases as malignant; this follows directly from the nature of
the medical problem under consideration. A detailed theoretical discussion
on this topic is not the subject of this paper.
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2.4. Thresholding

In the medical decision-making problem, the final diagnosis must indi-
cate whether a tumor is malignant (M) or benign (B). However, supporting
a decision in a case where there is not enough information may lead to a
wrong diagnosis. Therefore, we accept a situation in which no diagnosis rec-
ommendation is made (NA), but only in the last stage of the decision-making
process. Since there are two different aggregation modes, we will need two
different classes of thresholds:

1. numeric threshold 7 : [0,1] — {B, M, NA},
2. interval threshold 7 : Zjg ) — {B, M, NA}.

For both classes a variety of methods can be constructed (see|Appendix A.2)).

Example 4. Let us consider some diagnoses from the previous examples.
For numerical modes we will use the simplest threshold method:

o (M g0
EYB ifr<o05

Application of this threshold leads to the following diagnosis recommenda-
tions: 7(0.294) = B and 7(0.763) = M.

For interval input we check whether the whole interval is above or below the
0.5 threshold:

M if a > 0.5
([a,0)) ={B  ifb<05anda<0.5.
NA  otherwise

The following diagnoses are then made: 7([0.107,0.482]) = B, 7(]0.638,0.888]) =
M and #([0.088,0.838]) = NA.

2.5. Summary of proposed approach

To sum up, our method assumes the use of effective and widely accepted
diagnostic models. By the use of interval representation and the uncertaintifi-
cation process, we have enabled these models to operate on incomplete data.
The next step is to take advantage of the wide variety of diagnostic models
for ovarian tumor. Thanks to the aggregation of decisions we were able to
improve overall effectiveness and minimize the impact of incomplete data on

10



complete [~ Original diagnosis #1
patient data Criginal diagnosis #2
—_— diagnostic :
model diagnosis #n
—> not feasible I no decision
Current approach
Proposed approach
Step 1:
uncertaintification
multiple final

diagnoses for

@
+—
=
%S
=
g B
= Uncertaintified —_— ~ 60% of patients
> diagnostic model 5 )
g 5 | g
: :
% uncertain | =
S Step 2: : )
k= _ interval 5
aggregation diagnosis | * .
& single final
o diagnosis for
Aggregated & | = 95% of patients
? diagnostic 7 ;
models

Figure 1: Graphical summary of current and proposed approaches. Rectangles represent
diagnostic models at different stages. Vertical arrows represent diagnostic model transfor-
mations (uncertaintification and aggregation). The third step (thresholding) is depicted
as an ellipse. Horizontal arrows represent the flow of patient data and diagnosis.

the final diagnosis. In the final step the interval diagnosis is converted to
a form that can be understood by the decision-maker (the physician). The
novelty is that we accept a situation in which no diagnosis recommendation
is made, which protects us from making an unjustified wrong decision in
cases where there is not enough information available. All three steps of the
proposed approach are depicted in Figure [l The next section concerns the
implementation and evaluation of this approach in a real-life medical decision
problem.
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Figure 2: Distribution of patients in terms of percentage of missing values in the dataset.

3. Evaluation

The following section describes a dataset as well as an evaluation proce-
dure. Furthermore, criteria for assessing the quality of classification perfor-
mance are discussed. The last subsection contains a technical description of
the research procedure.

3.1. Subject of the evaluation

The study group consists of 388 patients diagnosed and treated for ovarian
tumor in the Division of Gynecological Surgery, Poznan University of Medical
Sciences, between 2005 and 2015. Among them, 61% were diagnosed with a
benign tumor and 39% with a malignant one. Moreover, 56% of the patients
had no missing values in the attributes required by diagnostic scales, 40%
had a percentage of missing values in the range (0%, 50%], and the remainder
had more than 50% missing values. The distribution of the percentages of
missing values is shown in Figure [2] The subset of the dataset is described
in detail in [6]. More information about the data format can be found in the
technical supplement (see section .

For the evaluation process we selected six diagnostic models: two scoring
systems [I8, [19] and four regression models [20, 21], 22]. Table[l| presents the
models and the patient features used by them. The attributes are divided
into two groups — the first is always available, and the second may have some
missing values. The models are subjected to the uncertaintification process
as described in section 2.1]
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diagnostic models
attribute SM Alc. LR1 LR2 Tim. RMI
m1[18] m2[19] ms [20] may [20] m5[21] m6[22]

age - - v v -
menopausal status v - - v
pain during examination - - - -
hormonal therapy - -
hysterectomy - - - - - v

v
v

SR

ovarian cancer in family

lesion volume

internal cyst walls

septum thickness

echogenicity

localisation

ascites -

papillary projections - v

solid element size - v
v
v

ANENEN

NN N NN
<

<o

<o

NN
NN
(\

blood flow location -
resistance index -
acoustic shadow - -
amount of blood flow - -
CA-125 blood marker - - - -
lesion quality class - - - - - v

NN
\

Table 1: Attributes used in the most common preoperative diagnostic models. Features
in the second group may have missing values.

For the aggregation step we considered four groups of aggregation opera-
tors: weighted averages (including r-means), OWA, Chocquet and Sugeno in-
tegrals, and t-operations (¢-norms, t-conorms and generalized conjunctions/dis-
junctions). Within each group, we investigated two subgroups of aggregation
operators, differing in whether they aggregate whole intervals or the numer-
ical representatives of intervals. The aggregation operators are described in
detail in [Appendix A.1]

Finally, we examined several thresholding strategies. For the resulting
interval or numerical values we checked how they differ from the value 0.5;
that is, whether they are greater or lower than 0.5 + €, where € > 0. For the
resulting intervals, we also tested the largest common part strategy. That is,

13



interval intersections were calculated with three intervals indicating regions
associated with benign, malignant and unknown (NA) output: [0,0.5 — €],
[0.5—¢,0.5+¢] and [0.5+¢, 1]. We examined which intervals have the largest
common part, as well as whether one intersected region is larger than the
sum of the other two. The thresholding strategies are described in detail in
[Appendix A.2l

3.2. Assumptions on dataset partition

The evaluation procedure was based on the classic division of data into
training and test sets. The initial dataset has very few patients with missing
attributes for some levels of missing data. If the data were divided approxi-
mately evenly, this would lead to a situation in which at the stage of training
and/or testing there would be discontinuities in the distribution of data miss-
ingness — while our goal is to develop a working algorithm for each level of
missing data. An alternative is to enlarge the dataset by including new pa-
tients; however, such a solution is very time-consuming and costly. Therefore
we chose a different solution, as described below.

The test set consists of patients with real missing data and some propor-
tion of patients with a complete set of features. The training set, on the other
hand, is constructed on a set of patients with a complete set of attributes,
and the incompleteness is then simulated. In the simulations we assumed
that the data are missing at random — this is because it is impossible to
reflect the true process by which data come to be missing during the exami-
nations. The actual distribution of data missingness in the patient attributes
is unknown, so we decided that in the training phase different levels of data
missingness would be simulated uniformly. Consequently, both training and
test sets have no discontinuities in the distribution of data missingness.

In addition, the real distribution of tumor malignancy in the population
is also unknown. Some statistics on this issue can be found in [5], where
the authors list almost all diagnostic models for ovarian tumor classification
with the distribution of malignancy in particular study groups. The be-
nign/malignant ratio varies widely among the groups, and there is no guar-
antee that patients are not duplicated among different groups. Therefore,
in the simulation process, during repeated random sampling of patients and
obscuring of data, we assumed that the distribution of tumor malignancy is
equal, so we randomly selected the same number of patients with benign and
malignant tumors.
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Figure 3: The division of the dataset. Patients with more than 50% missing values were
not included in the experiment.
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Figure 4: Class distribution in the training and test sets.

3.3. Fvaluation procedure

With regard to the assumptions mentioned in section the input
dataset described in [3.1] was divided as follows. In the training set there
are 200 patients with no missing values in the attributes required by the di-
agnostic models. The test set consisted of the remaining 18 patients with no
missing values and those who had missing values in the range (0%, 50%]. As
a result, the test set consisted of 175 patients. The aforementioned subgroups
of 200 and 18 patients had the same proportion of benign to malignant cases.
Patients with more than 50% missing values were excluded from the study.
The dataset partition is presented visually in Figure [3] and Figure [4]

The aim of the training phase is to optimize the parameters of the ag-
gregation operators and thresholding strategies on different simulated per-
centages of missing features. The levels of missing data were set to vary
from 0% to 50% with a step size of 5%. For each level, 1000 repetitions were
made of the following procedure. Firstly, 75 patients with benign tumors and
75 patients with malignant tumors were randomly selected from the train-
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ing set. Secondly, a given percentage of patients’ features from the second
group of attributes were obscured (removed). Next, with such input, the un-
certaintified diagnostic models calculated interval-valued diagnoses. Finally,
the aggregation operators and thresholding strategies calculated final diag-
noses. Performance measures were calculated according to the assumptions
in Section [3.4] All results are averaged over the repetitions and the levels
of missing data. To avoid overfitting, the aggregation operators and thresh-
olding strategies are optimized on a reasonable set of numerical parameters,
selected by an expert. Each step of the training phase is presented in Fig.
bl The result of the training phase is a set of optimized aggregation opera-
tors with thresholding strategies which have good performance on simulated
missing data.

In the testing phase, the optimized aggregation operators and threshold-
ing strategies are examined on the test set. This step checks the performance
of these aggregation operators on data with the actual missing values. Again,
the performance is calculated according to Section |3.4] To estimate uncer-
tainty of the performance values obtained on the test set, we performed
stratified bootstraping with 500 replications.

3.4. Criteria of performance evaluation

The aim of the evaluation is to choose such an aggregation operator and
thresholding strategy which provide an accurate diagnosis of malignant cases
with the highest possible decisiveness. The performance of learning algo-
rithms can be expressed by many state-of-the-art measures, such as accu-
racy, sensitivity and specificity. In the problem considered here, the desired
solution should ensure very high sensitivity and high specificity. Moreover,
in a few cases the results of diagnostic models are ambiguous, so the clas-
sification method should not perform a classification by chance — in such a
case the patient should be referred to an experienced gynecologist. Hence we
accept a situation where a few percent of the patients still have no diagnosis
recommendation (decisiveness lower than 100%). Since the selection of an
appropriate unified performance measure is a difficult task (see [23]), the cost
matrix approach was considered.

Table [2| presents the costs of possible decisions made by a classifier. The
correct classification of tumors, as true positives and true negatives, comes
with zero cost. The highest cost is associated with false negatives, when a
patient has a malignant tumor and the prediction indicates that it is benign.
The cost of a false positive is set to be two times smaller than that of a false
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Figure 5: Visualization of the training phase. Data flow is represented as arrows, and
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predicted
benign malignant NA
benign 0 2.5 1

malignant ) 0 2

actual

Table 2: Cost matrix. The costs were assigned based on expert gynecologists’ opinions.

negative, since unnecessary surgery is still dangerous for a patient, but there
is a much greater chance of recovery. There is also a certain difference in
costs when a classifier does not know which class should be assigned. The
costs of no decision (NA) are lower than false positive, since the patient
is referred to an experienced gynecologist who is still able to make a good
decision. However a further misclassification is not ruled out, so in case of no
prediction, the cost when the tumor is malignant is two times greater than
the cost when it is benign.

3.5. Technical issues

The statistical evaluation, as well as the implementation of the proposed
methodology, were performed using R software, version 3.1.2 [24]. All scripts,
documentation and non-sensitive data are available on the GitHub: http://
ovaexpert.github.io/ovarian-tumor-aggregation. Due to the extensive
amount of computation required, all calculations were performed with the use
of the Microsoft Azure cloud service.

4. Results

This section presents and discusses in detail the results obtained during
the training and testing phases.

In the training phase eight groups of aggregation operators and four
thresholding strategies were considered and optimized to minimize the to-
tal cost obtained according to the cost matrix. As a result we obtained
a set of aggregators with optimized parameters, and the best among them
were chosen. The top tree aggregation operators and thresholding strategies
within each group are listed in Table [3]

Figure [6] summarizes an experiment conducted on a training data set that
was subjected to the process of obscuration. First, the original diagnostic
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Performance measures with 95% CI

No. Operator parameters Total cost  Decisiveness Sensitivity Specificity

Integrals in interval mode given by (A.15) and (A.16

1 Choquet, pavuc, Tcen,0.025 80.0 (£+28.8) 92.0 (£4.0) 82.6 (£11.0) 93.0 (+4.6)
2 Choquet, ficard, Tcen,0.025 80.0 (£27.8) 92.0 (£4.1) 84.8 (£10.3) 91.3 (£5.3)
3 Sugeno, ficard, Tcen,0.025 80.0 (£26.1) 87.4 (+£4.9) 90.9 (+£8.0) 89.0 (+6.2)
Integrals in numerical mode given by and

4 Choquet, rep ., LAUC, T0.025 80.0 (£28.8) 92.0 (£4.0) 82.6 (£11.0) 93.0 (+4.6)
5 Choquet, rep.cy; Heards 70.025 80.0 (£27.8) 92.0 (+£4.1) 84.8 (£10.3) 91.3 (£5.3)
6 Sugeno, rep.in; Heard, T0.0 87.5 (£31.8) 100.0 (-) 86.5 (+8.6)  82.9 (£6.9)

Weighted means in interval mode given by (A.13)

T Wwids T =2, Feen.0.025 75.5 (£26.2)  97.1 (£2.6)  91.8 (£7.2) 84.3 (£6.2)
8 Wems T =3, Teen.0.0 775 (£28.1) 100.0 (-)  88.5 (£8.7) 84.6 (£6.3)
9 w1, T =2, Feen0.025 79.0 (£27.5)  94.3 (£3.2)  91.7 (£7.3) 84.6 (£6.4)
Weighted means in numerical mode given by (A.6)

10 repuy, Wep, T = 3, T0.0 72.0 (£27.5)  97.1 (£2.6)  90.0 (£8.6) 86.7 (£5.9)
11 repusy, Wep, 7 = 3, T0.0 745 (£27.9)  OT.1 (£2.6)  90.0 (£8.6) 85.8 (£5.9)
12 repoins Wwids T = 3, T0.025 78.0 (£30.0)  94.3 (£3.4)  85.7 (£9.3) 89.7 (£5.5)
Ordered Weighted Average (OWA) operators in interval mode given by (A.14

13 Wdees Teens Feen,0.025 70.0 (£29.1)  94.9 (£3.4)  90.2 (£8.3) 87.8 (£5.9)
14 Wdee, Tmins Teen,0.025 72.0 (£29.3)  96.6 (£2.8)  90.2 (£8.3) 86.4 (£5.9)
15 Wdecs Mwm, Toen,0.025 73.5 (£28.4)  94.9 (£3.1) 90.0 (£8.5) 87.1 (+6.2)
Ordered Weighted Average (OWA) operators in numerical mode given by (A.7)

16 reDPeey, Waees Teen, T0.025 70.0 (£20.1)  94.9 (£3.4)  90.2 (£8.3) 87.8 (£5.9)
17 rePasn, Wdee, Tminy T0.025 72.0 (£29.3)  96.6 (£2.8)  90.2 (£8.3) 86.4 (£5.9)
18 rePuon, Waee, Twm, T0.025 73.5 (£28.4)  94.9 (£3.1)  90.0 (£8.5) 87.1 (£6.2)
t-operation based operators in interval mode given by (A.17)

19 Smax, & = 0.25, Feen.0.025 78.0 (£26.6)  94.3 (£3.4) 918 (£7.0) 84.5 (£6.6)
20 tmin, @ = 0.25, Fmax.0.025 89.5 (£28.5)  94.9 (£3.1)  89.8 (£8.8) 82.1 (£6.9)
21 tmins @ = 1.0, 7max.0.0 100.0 (£35.0) 100.0 () 73.1 (£12.5)  90.2 (£5.2)

t-operation based operators in numerical mode given by (A.12

22 repueys Smax, @ = 0.25, 70,025 82.0 (£27.5)  94.9 (£2.8)  89.8 (+8.4) 84.6 (£6.4)
23 rePpays tmin, @ = 0.25, 70.025  89.5 (£28.5)  94.9 (£3.1)  89.8 (+£8.8) 82.1 (+6.9)
24 rePin, Sprods @ = 0.25, T0.025  95.0 (£29.7)  93.7 (£3.2)  87.5 (+8.9) 82.8 (+7.2)

Table 3: Performance measures for the top three aggregation operators and thresholding
strategies within each group. Abbreviations: Dec. — Decisiveness, Sen. — Sensitivity,
Spec. — Specificity, Acc. — Accuracy. All measures, along with bootstrap percentile
95% confidence intervals, are achieved in the test set. The decisiveness, sensitivity and
specificity are in percentage values.
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models were runE| on that data and the total cost was calculated according
to the cost matrix, for each model and each level of missing data. The graph
of total costs is shown in Fig. @(a). As expected, the cost grows rapidly with
increasing level of missing data. This is because classical models are not able
to make a diagnosis when some attributes’ values are not available, thus they
fail to predict any value (NA). Next, the diagnostic models were uncertain-
tified and again run on the training data with missing values. The results
can be seen in Fig. [6(b). This time the total cost for each of the models
grows more slowly. This demonstrates that uncertaintification itself makes it
possible to reduce the impact of data incompleteness on the effectiveness of
diagnosis. Finally, in Fig. @(C) we can observe the cost of diagnosis obtained
via aggregation. The diagram shows one arbitrarily chosen aggregation op-
erator for each group. The total cost is much lower than in cases (a) and
(b) for each level of missing data, and its growth is small. Consequently, the
training phase allows us to obtain a set of aggregation operators that are sig-
nificantly better for ovarian tumor diagnosis than single diagnostic models,
for each level of missing data.

Next, the results obtained during the training phase were verified on the
test data set with actual (not simulated) missing values. Figure [7] presents
the total cost for (a) original models, (b) uncertaintified models, and (c) ag-
gregation operators. Again, the cost is highest for original models and lowest
for aggregation operators. These results confirm the claim that aggregation
operators are a good tool for diagnosis in the presence of missing data.

A detailed analysis of diagnostic models and the best aggregation opera-
tors is depicted in Fig. [§. The accuracy, sensitivity, specificity and decisive-
ness of each of the methods are presented. It can be seen that for the original
models accuracy, sensitivity and specificity are quite high, but decisiveness
is low — in many cases a patient is not diagnosed at all. On the other hand,
aggregation operators produce equal or even higher values of accuracy, sen-
sitivity and specificity, while at the same time achieving high decisiveness
— a diagnosis is unavailable for fewer than 10% of patients. These are very
good results, showing that aggregation is a promising way of improving the
quality of medical diagnosis.

! An original model may still classify if missingness of patients’ features does not concern
attributes used by the model. Although the original and uncertaintified models are not
the subject of the optimisation in the proposed approach, they are plotted for comparison
with the aggregation.
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Figure 6: Simulation results from (a) original models, (b) uncertaintified models and (c)

aggregation groups. The aggregation groups show strategies with the lowest total cost
achieved on the training set.
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Figure 7: Comparison of total cost performance on the test set among (a) original models,
(b) uncertaintified models, and (c) aggregation groups.
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Figure 8: Comparison of accuracy, sensitivity, specificity and decisiveness on the test set
among (a) original models, (b) uncertaintified models, and (c) aggregation groups.

5. Discussion

There were at least two reasons for carrying out the present study. The
first was to explore a new, general approach to dealing with missing data
through uncertaintification and aggregation of existing methods. This goal
was successfully achieved, and the results of the experiments confirmed that
aggregation operators are a good tool to support decision-making in the
presence of incomplete information.

The second objective was to incorporate aggregation methods into the
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OvaExpert system, to allow ovarian tumor diagnosis when some of the data
are missing. Ovalxpert is an innovative system based on machine learning
techniques and computational intelligence. The system is designed to in-
tegrate present knowledge about ovarian tumors (models, scoring systems,
reasoning schemes, etc.) into a single computer-aided system. Its main aim
is to equip a physician with a convenient tool to collect and manage patient
data, to minimize the negative impact of incomplete data on the final diag-
nosis, to improve the reliability and efficacy of the diagnosis, and finally to
present the result in a way that gives maximum information to the doctor.

One of the diagnostic modules in OvaExpert is based on aggregation
of diagnostic models. To this end we need to choose only one aggregation
operator that is best suited to our problem. To select the best aggregation
operator from those returned in the training and testing phases, we require
that the following conditions be satisfied:

e sensitivity > 90%,

e specificity > 80%,

e sensitivity > specificity,
e decisiveness < 100%.

The first two rules filter out aggregation operators with high sensitivity
and specificity values. The third rule reflects the fact that in a medical con-
text sensitivity is more important than specificity. Since these two measures
are correlated there may be some models (aggregation operators) that trade
off sensitivity for specificity — we reject such models. Finally, we exclude
models with 100% decisiveness, since we do not wish to impose diagnoses
that lack sufficient justification. In this case no decision, leading to further
examinations, is better than a wrong decision.

The operator that was chosen for OvaExpert will be further referred to
as OEA (OvaExpert Aggregator). It is an OWA operator defined by
with the weight vector wyec, rep.., as representative selector, 7 o25 as thresh-
old and 7y, is used to order input values (see Appendix A for detailed
definitions). The total cost of this operator in comparison with the original
diagnostic models is depicted in Fig. @ (on the training dataset) and Fig.
(on the test dataset). OEA is significantly better than all of the other
diagnostic models. This was verified with McNemar’s statistical test, and
the results are given in Table [
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Figure 9: A comparison of total costs between the original diagnostic models and the
selected aggregation strategy in the training (a) and test (b) phases. The shaded area in
(a) indicates lower and upper bounds of the total cost of the original models. The vertical
range on the first bar in (b) indicates lower and upper bounds of the total cost of all
original models.

6. Conclusions

The main contribution of the paper is the solution provided to the prob-
lem of making decisions under incomplete information. Our approach is
based on interval modeling, uncertaintification and aggregation of existing
models. We have not only presented the theoretical concept, but also con-
ducted exhaustive testing and provided a framework written in R that can be
used by other researchers in many disciplines, not only in medicine. Apart
from the general method of dealing with missing data, we have developed
OvalExpert, a complex system for diagnosis support. The results presented
here form part of that system.

The basic conclusion of our study is that with our approach we can obtain
better results in ovarian tumor diagnosis than when using known diagnostic
models. This is especially evident when diagnosis is based on incomplete
data. Using aggregation we can achieve a synergy effect and become able to
cope with quite a large amount of missing data (up to 50%). Selected method
(OEA) is able to give proper diagnosis despite missing data. Total cost of 72
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Original models
Ale. LR1 LR2 RMI SM Tim.

Ale. < 0.001 <0.001 <0.001 0.834 0.472 0.723
LR1 <0.001 <0.001 <0.001 0.406 0.080 1.000
LR2 <0.001 <0.001 <0.001 0.366 0.060 0.935
RMI <«0.001 <0.001 <0.001 <0.001 0.001 < 0.001
SM <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Tim. < 0.001 <0.001 <0.001 0.001 0.017 < 0.001

OEA <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Uncertaintified
models

Table 4: McNemar’s test with Benjamini-Hochberg correction between the original diag-
nostic models and the uncertaintified models with the selected aggregation strategy. It
can be observed that the uncertaintified models significantly outperform the corresponding
original models. Moreover, OEA significantly outperforms the original models (o = 0.05).

is very low compared to original diagnostic models (142.5-189). Moreover,
very high sensitivity and specificity proves that proposed approach can be
applied in real medical practice.

We are aware that such evaluation would benefit from the usage of other
external datasets. One of the reasons for development of the OvaExpert sys-
tem is to enable us to gather new medical data. We established a cooperation
with some medical centres from Europe. Our goal is to create new, diversified
datasets which are now not publicly available in this research field.

Our study was limited to the case of supporting ovarian tumor diagnosis,
but it can be adapted to other decision-making problems for which models
equivalent to diagnostic models are available. Our further research is aimed
towards improving the aggregation methods so that they better suit the
specifics of the patient’s description. Moreover, considering the high cost
of medical examinations, we wish to be able to distinguish attributes that
must be filled from those that can remain empty without a significant loss
of decisiveness. In addition, we have begun research into the possibility of
using the developed methods in cardiology and in economics.
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Appendix A. Evaluated approaches

This section describes all groups of aggregation operators and threshold-
ing strategies with all required parameters (such as the method of weight
calculation or selection of interval representatives) used in the evaluation.

Appendiz A.1. Aggregation operators

This subsection lists all aggregation methods evaluated in our research.
There are four groups of operators: r-means, OWA | integrals and t-operations.
Each group is represented both in numerical and interval aggregation mode.

Appendix A.1.1. Weight calculation strategies

Many aggregation operators involve assigning appropriate weights to in-
put values. The problem is the same regardless of the mode of aggregation.
Thus, we combine the description of different weight calculation strategies
into one subsection.

The following weight calculation strategies were implemented in this re-
search:

e constant value:

wi(la,b]) =1, (A1)
e interval length:
wyid([a, b)) =1 —(b—a), (A.2)
e interval endpoint distance from 0.5:
0 ita<05<b
Wep([a,b]) = ¢ 2(a—0.5) ifa>05 (A.3)

2(0.5—b) otherwise.

e interval center distance from 0.5:
a+b

wen([a,]) = 2105 — =

B (A.4)
e lower and upper bounds of interval and interval center (wWpyin, Wmax and
Ween, Tespectively),

e combined interval center and width

([0, ]) = 2

(11— (b—a)). (A.5)
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Appendiz A.1.2. Numerical mode

Aggregation methods that operate in this mode use a single value that
represents the whole interval. Such a representative of the interval & is
denoted by rep(z). We evaluated the three most obvious representatives,
namely the lower (rep,;,) and upper (rep,,..) bound and center of the in-
terval (rep.,). This behavior simplifies the problem to classical non-interval
aggregation. For more information about the presented aggregation methods
we refer the reader to [12].

Weighted r-means. The weighted mean is probably the most commonly used
method of aggregation. r-means generalize this concept by the using r-
th power of each argument (for r = 1 the r-mean becomes the classical
weighted mean). For weighted means, the selection of weights is crucial and
determines the final outcome of the aggregation. The general formula for
weighted r-mean is the following:

S . Tow(dy) - rep(d;)”
Aggmean('rhx%m»xn): ' 21121(1 ) A‘p< ) ’ (A6>

Ordered weighted average (OWA). This class of aggregation operators was
developed by Yager in 1988 [25]

S . » o w; - rep(Zae)
AggOWA(xh‘x?v”’axn) = Z 1zn © . (A7>

i=1 Wi

In contrast to the arithmetic mean, in the ordered weighted average the weight
vector is constant, while the input variables are ordered with respect to a
certain criterion. Our implementation of OWA supports the ordering of input
values with respect to any of the weights introduced in[Appendix A.1.1} Such
an ordering obtained from weight w is denoted by m,. We used the following
predefined weight vectors:

e [0,0.25,0.5,0.5,0.75, 1] — denoted by wiyc,
e [1,0.75,0.5,0.5,0.25,0] — denoted by wyec,
e [0.1,0.5,1,1,0.5,0.1] — denoted by wy,
e [1,0.5,0.1,0.1,0.5,1] — denoted by wp;.
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Choquet and Sugeno integrals. These are two classes of aggregation operators
defined with the use of the measure . Their main advantage is that they
are able to model interactions between input variables.

The Choquet integral is given by

n

Ag8eno(B1, 2, ony n) = Y ((H;) — p(Hi 1)) - rep (@) (A.8)

i=1

and the Sugeno integral by
Aggsug(il,ig, iy Tp) = Mmax [min(u([—[i),rep(iﬂ(i))} (A.9)

i=1ton

where H; = {n(1),7(2),...,7(i)}, 7 is a non-decreasing permutation of input
variables and p is a measure. The following measures are implemented in
this research:

e set cardinality
feard(H) = % (A.10)
e additive measure
pave({hi, ha, .. }) = ZM({hz}) (A.11)

i=1

where the measure of a singleton was determined using the area under
the ROC curve (AUC) of the original diagnostic models (the greater
the AUC, the higher the measure).

Triangular operations. The last class of numerical aggregation operators is
based on triangular operations, namely:

e t-norms (for a = 1),
e t-conorms (for o = 1),
e soft t-norms (for v < 1),

e soft t-conorms (for o < 1).

This class of operators is given by the formula

oy l-a~ . .
Aggy(T1, ..y Tn) = " Z rep(Zr(;)) + o - P(rep(Z1), ..., rep(2,)) . (A.12)

i=1
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Appendiz A.1.3. Interval mode

Interval mode utilizes the whole of the interval information. The liter-
ature contains two approaches to adapting numerical aggregation strategies
to operate on interval data. The first involves use of interval arithmetic, and
the second the application of the original operator to the lower and upper
bound separately. Both methods are presented.

Interval weighted r-means. These aggregation operators are obtained from
numerical r-means by the use of interval arithmetic for all calculations. The
formula is as follows

zlw

AgE ean (i1, B, . \/ RALIC) (A.13)

but now Y denotes the sum of intervals, and multiplication (division) is
replaced by multiplication (division) of interval by a constant.

Interval OWA. A generalization of OWA to operate on intervals was pro-
posed by Yager [14] 26]

A:ggOWA(ila ---,@n) = [AggOWA(%a ---a%)aAggOWA(fla ,fn)] . (A-14)

The main idea is to apply an OWA operator for the lower and upper bounds
of the input intervals separately, and to form an interval from the two results.

Interval Choquet and Sugeno integrals. An analogous approach was applied
to define interval Choquet and Sugeno integrals [14]. They are defined by

Ag8Cno(T1, T2y ooy Tn) = [AggCho@w(l)a&ﬂ(z)a e Lr(n))a
AgZeno(Tr(1)s Tr(2)s -+ Tr(n))] (A.15)

and

AggSug('fla ;%27 e jn) = [AggSug(zﬂ(lﬁgﬂ(Q)’ BT &ﬂ(n))a
Aggsug(fﬂ(l),fﬁ(g), ...,fﬂ(n))] . (A.16)

Interval triangular norms and conorms. This approach can also be used to
obtain interval aggregation operators based on triangular operations

Aggy (@1, @9y .y i) = [Agge (21, To, oo, 2,), AL (T1, Tay oy Tn)] - (ALLT)
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Appendiz A.2. Thresholding strategies

Thresholding is the third step in the proposed approach, which has the
aim of converting a numerical or interval decision into a final diagnosis. This
subsection lists all implemented and evaluated strategies for both numerical
and interval modes.

Appendiz A.2.1. Numerical mode
For numerical decisions there is only one class of thresholding strategies
— thresholding with margin € € [—0.5,0.5] — given by

B ifa<0.5—¢
T(a) =<M ifa>05+c¢ (A.18)
NA otherwise.

Appendix A.2.2. Interval mode

For interval mode we evaluated three thresholding strategies. The first
approach is to apply a numerical threshold to the interval representative,
which results in

Trepe([@, b)) = Te(rep([a, b])) . (A.19)

The second is the interval version of thresholding with a margin given for
each € € [-0.5,0.5] by

B ifb<05+e¢
7e([a,b)) =< M  ifa>05—¢ (A.20)
NA otherwise.

The last approach involves calculation of the common part between intervals.
Let len([a,b]) denote the length of interval [a,b]. Then this thresholding
strategy is given by

NA  if [[a,b] N [0.5 — €,0.5 + ¢€]| >
max(|[a, b] N [0.5+ ¢, 1]|, |[a, b] N]0,0.5 — €])|
B if |[a,b] N [0.5 + €, 1]| < |[a,b] N [0,0.5 — €|

M otherwise .

Fep(f0, ) (A21)
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