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Abstract. In this paper we propose a new method for classifying uncer-
tain data, modeled as interval-valued fuzzy sets. We develop the notion
of an interval-valued prototype-based fuzzy classifier, with the idea of
preserving full information including the uncertainty factor about data
during the classification process. To this end, the classifier was based
on the uncertainty-aware similarity measure, a new concept which we
introduce and give an axiomatic definition for. Moreover, an algorithm
for determining such a similarity value is proposed, and an application
to supporting medical diagnosis is described.

1 Introduction

In this paper we present the novel concept of an interval-valued fuzzy classifier
for supporting decision-making processes based on imprecise and incomplete
(uncertain) data. The main aim was to develop a comprehensive, consistent and
effective approach that enables the modeling and processing of input data, and
then the presentation of results, to be done in a way that preserves the valuable
information concerning the amount of uncertainty at each stage of the process.

Our theoretical framework is the well-developed interval-valued fuzzy set
(IVFS) theory, introduced by Zadeh in [1] as a natural extension of fuzzy set
theory. While a fuzzy set models a gradual, but precise, degree of truth of a
statement, IVF'Ss make it possible to add uncertainty about that degree. IVF'S
A is defined by a pair of fuzzy sets A, A : X — [0,1] such that for each x € X
an interval [A(xr), A()] is understood to contain the true, incompletely known
membership degree. The length of this interval reflects the amount of uncer-

tainty about an element z, taking values from 0 when A(z) = A(x) to 1 when
[A(x), A(x)] = [0,1]. Framework of IVFS was designed to be able to deal with
incomplete data. In cases where data is missing, we assign the unit interval as the
membership degree, meaning that all membership degrees are equally possible.

An IVFS is also a special case of type-2 fuzzy set (also introduced by Zadeh
[1]), known by the name of interval type-2 fuzzy set. Another equivalent notion

is the Atanassov intuitionistic fuzzy set theory, which specifies a membership
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function and a non-membership function separately (for a comparison, see [2]).
All of these theories have proved their usefulness in many areas of soft computing
such as fuzzy control, image processing, financial prediction, decision-making,
computer vision, medical diagnosis, etc. [3, 4, 5, 6, 7]. In what follows we will
contribute to medical decision support systems by constructing an interval-based
fuzzy classifier.

Hereafter by FS we denote the set of all fuzzy sets, by ZVFS we denote the
set of all interval-valued fuzzy sets, and by Z we denote the set of all intervals in
[0, 1]. Formally a classifier can be defined as a function D : O™ — C where O is a
set of possible values of classification features (it may be for example a subset of R
or Z), C is the set of all possible m-element vectors which coordiantes correspond
to particular classes and values reflect the membership to these classes, n is the
number of classification features and m is the number of classes. As stated in [8],
designing a classifier means “finding good D”. D can be specified functionally
or as a computer algorithm.

We can define different sets of labeled vectors in C, resulting in different types
of classifiers, e.g.:

1. crisp classifier:
Ccr = {y € {07 1}m}

2. probabilistic classifier:
Cor={y €0, 1": > v =1}
i=1

3. fuzzy classifier:
Cru={y €[0,1]™}

There are many books on the theory and applications of fuzzy classification
and pattern recognition. A very good introduction to designing fuzzy classifiers,
with a very large subject bibliography, can be found in [8]; also worth examining
are [9] and [10]. More information on the construction and use of crisp and
probabilistic classifiers can be found in [11, 12].

In this article we introduce a new type of classifier:

4. interval-valued fuzzy classifier:
Civ = {y (S Im}

A popular approach is to design, for each class, one prototype vector which
represents the entire class. A very important element of such classification pro-
cess is the construction of suitable vectors to describe the classes. Classifiers of
this type are called prototype-based classifiers. Prototypes can be formed us-
ing clustering algorithms, such as k-means, or can result from the application
of expert knowledge. We have taken the second approach, and through the use
of IVFSs we were able to model experts knowledge along with its subjectivity,
uncertainty and information deficiency.



An Interval-Valued Fuzzy Classifier 3

In the next section we introduce in detail the idea of an uncertainty-aware
similarity measure, which forms a central concept of a prototype-based classifier
and enables the proper comparison of uncertain data. We propose an efficient
algorithm for determining its value using the notion of relative cardinality of
IVFSs. The third section is devoted to an interval-based classifier. In Section
4 we apply the ideas presented to the problem of supporting ovarian tumor
diagnosis. Finally we state some conclusions.

2 Similarity measure for uncertain data

The similarity measure is a central concept of prototype-based classifiers that
estimate the class label of a test sample based on the similarities between the
test sample and a set of given prototypes.

In the following we briefly review some of the similarity measures for IVFSs
known from the literature, and next we introduce the concept of an uncertainty-
aware similarity measure, together with an effective algorithm for computing its
value.

2.1 An overview of similarity measures for IVFSs

A common approach for measuring similarity involves the use of a distance met-
ric. For example, in [13] the following similarity measure based on a normalized
Hamming distance was proposed:

n

szmH(A B) =1- % Z (\A(mz) — B(z;)| + ‘Z(xi) —

B(zy)]). (1)

Another well-known approach is the Jaccard coefficient extended to IVFSs in
the following way [14, 15]:

; (A' E) _ Zi:l 111111(41( ) ( )) E 1m1n( (J;l) B(Z‘Z))
stmyg s = o
Zi:l IIlELX(;l(:Ci)’ B( 1)) + E i=1 maX(A( i)7 B(IZ))

Both simpy and sim; measure similarity with a single, scalar value. In the
method proposed by Bustince [4] the similarity value is defined as an interval:

(2)

simp(A, B) = [SL(Z,E),SU(Z,E)] (3)

Sp(A,B) =t (IncL(A B), IncL(E,,Z))

Incy,

(
(
Su(A,B) =t (IncU(A B), JncU(é,Zx))
(A, ):gg{{l,min(l — A(z) + B(z),1 — A(z) + B(z)) }
(

Incy(A, B) = inf {1, max (1 — A(z) + B(z),1 - A(z) + B(z)) }

reX

where t is a t-norm i.e. an increasing, commutative and associative mapping
t:[0,1]% — [0,1] satisfying t(1,2) = x for all z € [0, 1]. More examples of IVFS
similarity measures can be found in [14].
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2.2 An uncertainty-aware similarity measure

The property of reflexivity of a similarity measure, natural and unquestionable
in classical set theory, is not so obvious when comparing IVFSs with positive
uncertainty value. Consider an extreme case ofv two gifferent concepts represented
by two one-element totally uncertain IVFS A = B = [0:1] / Mentioned IVFS,

according to all classical similarity measures, including simpy, sim; and simp,
are definitely identical (simpy (A4, B) = ssz(A B) = 1, simp(A, B) = [1,1]).

But is that also true for concepts they represent? In view of the total lack of
knowledge, such a claim has no basis. In fact, the “real” membership degrees may
be totally different for A and B, and consequently a possible value of szm(A B)
may be anywhere in the range [0,1]. Ignoring the uncertainty of A and B may
have particularly adverse consequences when such a similarity measure is applied
to practical problems. In this paper we emphasize the role and importance of
the uncertainty factor for making well-informed decisions. For this reason we
propose the notion of an uncertainty-aware similarity measure, described by the
following definition.

Definition 1. A mapping sim, : IVFSXIVFS — T is said to be an uncertainty-
aware similarity measure if it satisfies the following conditions for all A, B,C, D €
IVFS:

1. simy(A, B) = [11]<:>A B& A,BeFS

2. szmu(A B) = simy(B, A)

3. zfA C BCC then szmu(A 0) < szmu(A B) and szmu(A C) < simy(B,C)
4. if AT B and C T D then simy(A,C) = simy(B, D)

where

— [a,b] <[e,d] = a<c&b<d,

-~ ACB& A(z) < B(z) & A(z) < B(z),Vz € X,
— [a,b] 2 [e,d] = a>c&b<d,

—~ ACB& A(z) > B(x) & A(z) < B(z),Yo € X

Conditions 2 and 3 are standard symmetry and monotonicity properties.
Conditions 1 and 4 reflect the goal of preserving the uncertainty value — when
comparing uncertain objects, the final result should also be uncertain. Moreover,
in 4 we require monotonicity with respect to uncertainty — the more certain are
the compared IVFSs, the more certain is the resulting similarity measure sim,,.

In [15], and then in [16], [17] similarity for IVFSs was considered in the
spirit of Definition 1. In the following we present an uncertainty-aware similarity
measure of IVFSs based on the notion of relative cardinality of fuzzy sets, i.e.
on the fact that for any A, B € FS:

sim(A,B) = o(AN; B|AU; B) (4)

where

O'(A ﬁt B)

o(A|B) = (B)
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is a relative cardinality of fuzzy sets. The scalar cardinality of fuzzy set o(A) is
typically defined by the so-called sigma-count ([18, 19]):

o(A) =) Ax).

rzeX

Moreover, sum A U; B and intersection A N; B are defined as:

(AU B) () = t* (A(), B(x))
(AN B) () = t (A(x), B(z))

where as a t-norm ¢ we can take for example a minimum t-norm ¢, (a, b) = aAb, a
product t-norm tprod(a, b) = a-b or a Lukasiewicz t-norm ¢ (a,b) = 0V (a+b—1).
A t-conorm t* is a dual operation such that t*(a,b) =1—t(1 —a,1 —b).

To introduce a formula for an uncertainty-aware similarity measure, we first
construct fuzzy representation sets of A and B, where a representation set is
defined as:

Rep(A) = {A € FS | Voex Az) < A(z) < A()}.

Then the uncertainty-aware similarity measure sim, based on the notion of the
relative cardinality, is defined in the following way.

Definition 2. The cardinality-based uncertainty-aware similarity measure of two
IVFSs A= (A, A) and B = (B, B), with a t-norm t, is an interval defined as:

simy (A|B) = mg(ﬁ\é),%a(mé)} (5)
where

sim_ (A|B) = Aer};lin(g) o(An, BJAU; B)
ep
BeRep(B)

simg(A|B) = max_o(AN; BJAU, B)
A€Rep(A)
BeRep(B)

The formula given by Definition 2 is t-norm dependent. In the present paper
we consider two of the most widely used t-norms: minimum and product. An
effective algorithm for calculating a value of (5) for a minimum t-norm was given
in [15]. In the following we present the algorithm for the case of the product t-
norm that we introduced in [20].

The presented approach to measuring similarity is a key concept in the
interval-valued classifier described in the next section. It allows the proper and
effective comparison of imprecise and incomplete data, without losing informa-
tion about the amount of uncertainty contained in that data.
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Algorithm 1 Algorithms for computing lower (left) and upper (right) bounds
of relative cardinality o;p(A|B) introduced in [20].

Lne 3 xAlx)- B(x) Ln« >, Al) - B(w)

2: d< ) cxBx) 2: d 3 ox B(x)

3: for all z € X in descending order 3: for all x € X in ascending order of
of A(z) do A(zx) do

4 re 5 40 re 5

5. n<n+A)- (B(x) — B(w)) 5. n<+n+ A(z)- (B(z) — B(z))

6: d< d+ B(z) — B(z) 6: d<« d+ B(z) — B(z)

7. if r > I then 7. if r <% then

8: return r 8: return r

9:  end if 9:  end if

10: end for 10: end for

3 Interval-valued fuzzy classifier

Our classifier is designed to deal with situations in which both the classified
objects and the classes themselves are imprecise, subjective and/or incomplete.
In such cases, the resulting classification would also be imprecise or incomplete.
In our approach we take full account of these features of the data. The proposed
classifier will be able to classify objects coded as an IVFS into classes which
are also described in that way. Moreover, classification will also be described in
interval-valued fashion. The final classification may be obtained with the use of
the score function proposed in [21].

More formally, the problem can be formulated in the following way. Given
a set O of objects to classify, described as an IVFS, compute for each of them
the IVFS in the domain of set C of all possible classes and its interval-valued
membership which describe the degree to which the object belongs to given class.

In this paper we assume that class prototypes as well as objects are coded
as IVFSs. For instance class ¢ € C is coded as IVFS iv(c), and object o, € O
as 1v(o;). The intuition behind the proposed classifier is to use an uncertainty-
aware similarity measure to compute the similarities between objects and class
prototypes and then use them as membership degrees in the resulting classifi-
cation. Formally, the assignment of object o; € O to classes using the singleton
notation can be stated as follows:

goi = Z SiWL[F({:L)(C),ZT{)(Oi))/C
ceC

It should be noted that uncertainty-aware similarity plays a fundamental
role in our method. Thus it is crucial to use a similarity measure applicable to
the problem being solved. simyp(iv(c),iv(0;) is an interval, hence the resulting
classification go is an IVFS.
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4 Application to supporting ovarian tumor diagnosis

The proposed classifier is demonstrated on a real data set from the field of
medicine. Ovarian tumors are currently one of the most deadly diseases among
women. According to recent statistics, annual numbers of new cases and deaths
in the USA amount to 22,000 and 14,000 [22].

Two main groups of tumors are discriminated: malignant and benign. Such
a division turns the diagnostic process into a classic binary classification. Each
of these groups subdivides into histopathological types. This means that the
problem might be expanded to a multi-class classification.

The correct discrimination between ovarian tumors is a key issue, because it
determines the method of treatment. For this reason, a number of preoperative
models for malignancy discrimination have been developed over the past two
decades. They range from basic scoring systems [23, 24] to formal mathematical
models, in particular rule-based schemes [25] and machine learning techniques
[26, 27]. Unfortunately, in external evaluation the efficacy of predictions of such
models rarely exceeds 90%, in terms of both sensitivity and specificity [28, 29].
Therefore, there is still a need to develop an effective preoperative model for
inexperienced gynecologists.

In our previous research we have indicated the imprecision of data obtained
by a gynecologist during examinations [30]. Many features are undoubtedly ob-
jective, such as levels of blood markers. Some examinations, however, require
assessment on the part of the gynecologist, who can be a source of subjectivity —
the more experienced he/she is, the more confident the result. In particular, this
is the case when an ultrasonographer examines a tumor. Furthermore, in some
cases we also have to deal with lack of data. Some examinations might be omit-
ted by a physician, either for medical reasons or due to the their unavailability.
These attributes may be conveniently modeled using IVFS theory.

The interval-valued classifier described above was applied to the problem of
supporting ovarian tumor diagnosis. In this problem we try to assign the best
matching histopathological profile of a tumor using the data available before an
operation.

Both patient and histopathological profiles were coded as IVFSs. For the sake
of simplicity, only four histopathological types were modeled for the present
example. Two of them were benign — Endometrioid cyst and Mucinous cys-
tadenoma — and two malignant — Serous adenocarcinoma and Undifferentiated
carcinoma — referred to further as HP 1, HP 6, HP 21 and HP 25 respectively.
Characteristics of class prototypes were obtained from an experts knowledge
and partially from analysis of historical medical data. Among more than fifty
attributes describing patient, five were arbitrarily selected: age, size of papillary
projections (PAP), blood serum levels of CA-125 and HE4 tumor markers, and
resistive index (RI). These attributes may be more or less subjective or impre-
cise. Moreover, some data may be not available at all. Based on a survey among
gynecologists at Poznan University of Medical Sciences, characteristics of those
parameters were obtained. A patients age is known precisely, while blood serum
levels of tumor markers are subject to some uncertainties. Resistive index and
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size of papillary projections were indicated as subjective attributes in the survey,
thus their value is uncertain. Moreover, values of the last three attributes were
not always available.

Real data based on histopathological profiles and example patients are pre-
sented in Tables 1 and 2. Note that patients missing data were replaced with
the unit interval [0, 1].

HP type] AGE | PAP | CAI25 HEA RI
1 [[0.27, 0.64][[0, 0.27]| [0, 0.04] | [0, 0.03] [[0.49, 0.78
6 [[0.29, 0.72][[0, 0.14][ [0, 0.18] |[0.01, 0.06][[0.22, 0.83
21 |[0.47, 0.76][[0, 0.52]| [0.3, 1] |[0.12, 0.9] |[0.23, 0.56]
25 |[0.39, 0.77][[0, 0.58][0.15, 0.98][[0.04, 0.62][[0.27, 0.45]

Table 1. Profiles of ovarian tumor histopathological type coded as IVFS.

Patient #|Postoperative AGE PAP CA125 HE4 RI
diagnosis
1 [HP1 [0.78, 0.78][[0.00, 0.38][[0.00, 0.06][[0.00, 1.00][[0.00, 1.00]
HP 2 [0.14, 0.14]{[0.35, 0.85]|[0.05, 0.15]{[0.00, 1.00]([0.60, 1.00]
3 HP 21 [0.62, 0.62]{[0.00, 0.25]|[0.95, 1.00]{[0.95, 1.00]{[0.00, 1.00]

Table 2. Profiles of patients coded as IVFS.

Now a classification using the cardinality-based uncertainty-aware similarity
measure formulated by (5) can be computed. By definition, the third patients
classification is the following:

Ao _ simy, ({;)(03),2'7)(}7473))/

\ hoa + simu(iZ(os),iZ(hpg))/hpe

+ simu(ﬁ(03),i~v(hp21))/hp21 + simu(i~v(03),z’~v(hpgg,))/hp2r

If we use the minimum t-norm for calculation of similarity, the final classification
is as follows:

A,, = [0.07,0.48]/}”01 4 [0.08,0.52]/hp6 (6)

4 [0.21,0.99}/hp21 n [0.13,0.90]/h

P25
and in the case of the product t-norm:

A, = [0.50,0.98]/hp1 4 [0.31,098]/hp6 (7)

i [0.54,0.9)9]/}%1 + [0.47,0.99]/}11)2? )
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The interpretation of classification from (6) is as follows. The possibility that
this patient should be diagnosed as HP 1 is [0.07, 0.48], which is a low score.
By contrast, the membership of class HP 21 is [0.21, 0.99]. To choose the best
matching class we can use the score function defined in [21] as

score([a,b]) =a+b—1.

Using this score, it is easy to see that class HP 21 is the best match for this
patient (with a score of 0.20, compared with -0.45, -0.4 and 0.03). It is worth
noting that this patient was postoperatively diagnosed with a type HP 21 tumor.

Tables 3 and 4 contain both classifications for the patients represented by
interval and score result.

Patient #— HP1 . HP6 . HP21 . HP25
interval |score| interval |score| interval |score| interval |score
1 [0.08, 0.93] 0.01 [0.09, 0.97] 0.06 [04117 0.91] 0.02 [0.097 0.96] 0.05
[0.17, 0.85]| 0.02 {[0.10, 0.79]|-0.11[0.09, 0.81]|-0.10]{[0.10, 0.83](-0.07
3 [0.07, 0.48]|-0.45([0.08, 0.52]| -0.4 |[0.21, 0.99]| 0.20 |[0.13, 0.90]| 0.03

Table 3. Classification obtained using minimum t-norm.

Patient 4 HP1 . HP6 . HP21 . HP25
interval |score| interval |score| interval |[score| interval |score
1 [[0.50, 0.98][0.48 [[0.32, 0.99] 0.31 [[0.28, 0.99]] 0.27 [[0.25, 0.99]] 0.24
[0.54, 0.99]| 0.53 {[0.40, 0.99]| 0.39 |[0.22, 0.99]| 0.21 |[0.20, 0.99]| 0.19
3 [0.50, 0.98]| 0.48 {[0.31, 0.98]| 0.29 |[0.54, 0.99]| 0.53 |[0.47, 0.99]| 0.48

Table 4. Classification obtained using product t-norm.

5 Conclusions

The main contribution of this paper is the concept of an uncertainty-aware
similarity measure, which was axiomatically defined and for which an efficient
algorithm was given. Based on this measure an interval-valued fuzzy classifier
was constructed and applied to real-life data concerning patients with ovarian
tumors. The uncertainty-aware similarity measure proved to be particularly use-
ful for supporting medical diagnosis, where uncertainty and incompleteness of
information are common and inevitable features. We obtained promising results
showing that IVFS theory is convenient for modeling and processing such data,
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and our experience suggests that practitioners prefer informative, even if un-
certain, feedback rather than excessively precise data. In our further research
we plan to improve the classification process and to thoroughly investigate the
properties of the uncertainty-aware similarity measure, including the influence
of the t-norm used in the similarity formula.
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