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Abstract. This paper presents an approach to applying stochastic or-
derings to evaluate classification algorithms for low quality data. It dis-
cusses some known stochastic orderings along with practical notes about
their application to classifier evaluation. Finally, a new approach based
on fuzzy cost function is presented. The new method allows comparing
any two classifiers, but does not require a precise definition of the cost
function. All proposed methods were evaluated on real life medical data.
The obtained results are very similar to those previously reported but
comparatively much weaker assumptions about costs values are adopted.
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1 Introduction

As long as machine learning algorithms are becoming more and more popular
and their area of application is simultaneously expanding, we are facing a wide
range of newly arising problems. One of them is the evaluation of algorithms
concerning real-life conditions with some unusual restrictions.

A typical binary classification problem’s goal is to find a model f : X — )
assigning the categories from ) = {0,1} to lists of attributes mapped by Y :
2 — Y and X : 2 — X, respectively. These kinds of models can be evaluated
by widely known evaluation functions such as: accuracy, precision, recall as well
as Fl-score.
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Unfortunately, not every classification problem matches the definition above
[1U2/34]. For instance, in some medical diagnostic problems, the physician is not
always able to collect all the data needed for the diagnosis due to the time and
money investment this constitutes [5J6]. In such situations we may want to eval-
uate classifiers similarly to the way real-life doctor’s decisions are evaluated. We
thus, take into account the data quality, the level of uncertainty, and allow the
possibility of receiving a “not available” (NA) value as the output of the classi-
fication model. In turn, this prevent the use of mentioned evaluation functions
so another solution must be found.

One of the proposed approaches is to introduce the cost function matching
model outcomes (projected as true positive, true negative, etc.) with the cost
of the real-life consequences they can contribute to [7]. Although this solution
works, the selection of cost matrix values is subjective with possibly divergent
opinions held by experts. Furthermore, some small changes in the cost matrix
values may cause significant changes in the final classification result (lack of
robustness). Another problem related especially to medical decision evaluation
is that costs of individual decisions may not be known. For example, for each
patient the cost of false—negative may be different depending on his or her other
medical conditions [g].

Another idea to study the performance of such classification algorithms is to
apply stochastic orderings. This method was proposed in [9JI0] and it fits into
the situation presented. It will be presented and extended in following sections.

The remainder of the paper is organised as follows. In Section [2] we present
basic notions regarding cost function and stochastic orders. Section 3 describes
an evaluated dataset as well as results for three stochastic order based classifier
evaluation methods. In section 4 we present details of our proposed approach as
well as some analysis of obtained results. Conclusions and further work appear
in Section 5.

2 Basic notions

Let Y be the output space of the models and let A : Y x Y — R be the loss
(cost) function used to find the best classifier. The main goal of the loss function
is to penalise wrong outcomes in order to enable finding the best model as the
model with the minimal loss. It means, that loss function values usually become
positive when the predictions do not match reality.

There also exists a dual definition of the loss function called reward func-
tion which we will use in this paper to match the common stochastic orderings
literature. It’s a simple opposite to the loss function which means the greater
value of the reward function is, the more relevant outcomes are. Therefore, the
best model can be found at its maximum. We can associate the random variable
reward U(Xf’fy) : {2 — R with the model f using the definition as follows:

UL = —AY (W), f(X(w))  VYw e 2. (1)



Table 1: Cost function (matrix) for example binary classification (a) and its
extension to uncertain classification (b).

predicted predicted
benign malignant benign malignant NA
actual benign TN:0 FP: 2.5 benign TN:0 FP:25 NO:1
malignant FN: 5 TP: 0 malignant FN: 5 TP: 0 N1:2

(a) (b)

Let X,Y : 2 — R be two random variables defined on the same probability
space (§2, A, P). From many available kinds of stochastic orderings, of most
interest from classification performance evaluation point of view are [11]:

1. Dominance in the sense of expected utility [I2]. Given an increasing function
u: R — R, X dominates Y wrt u (denoted X >, Y) if

Ep(u(X)) = Ep(u(Y)). (2)

2. First order stochastic dominance [I3]. X dominates Y (denoted X >=15 Y)
if
Veer P(X >2)>P(Y > x). (3)
It is well known that X <4 Y if and only if X <, Y | for all increasing
utility functions u : R — R.
3. Statistical preference [14]. X is statistically preferred to Y (denoted X >,
Y) if
P(X>Y)>P(Y >X). (4)

Based on this we can present the notion of the (=, A)-domination proposed
by Couso and Sénchez [9].

Definition 1. Let f; : X — Y and fo : X — Y be the classification models
and > be any stochastic ordering. f1 (=, A)-dominates fo if

X,Y X,Y
U(A,fl) t U(A,fz) : (5)

Example 1 Let us consider the binary classification problem which refers to
determination whether the tumor is malignant (M) or benign (B). Let X be the
random vector of attributes and Y — the outcome. Let the cost matriz be given
as in Table[Id.

According to the definition of the reward function we have:

1, if ¢ < =5,
Ev) _ ) 1=P(Y =M, f(X)=B),if =5 < c<—2.5,
PUAT" > =9 py = £(x)), if =25 <¢<0, ©)

0, if ¢ > 0.



The equation above together with Definition[]] lead to the conclusion that f
(*=1st, A)—dominates fo if and only if:

P(Y = M, f1(X) = B) < P(Y = M, f2(X) = B), (7)

P(Y = f1(X)) > P(Y = f2(X)). (8)

Moreover, this stays true for any cost matriz for which
AY =M, f(X)=B) 2 AY =B, f(X) = M) = A(Y = f(X)). )

This means that (=15, A)—dominance does not depend on actual cost values but
only on their order.

Example 2 Let us consider again the binary classification problem from Exam-
ple[1) with the same cost matriz. We can distinguish following cases:

PSS >US)) = P(A(X) = B, o(X) = M), if Y=B,  (10)
PUSY >USD) = P(fi(X) = M, fo(X) = B), if Y=M. (11

According to the @) and and Deﬁm'tion fi (=sp, A)~dominates fo if
and only if:

P(Y = f1(X),Y # f2(X)) > P(Y = f2(X),Y # f1(X)). (12)

Example 3 Let consider medical classification problem for 10 patients, cost ma-
triz from Example[] and three diagnostic models f1, fa and fs. Actual diagnoses
and predictions are given in Table[3 We can easily calculate that

P(Y = f1(X)) =0.8 P(Y =M, fi(X)=B) =0.1 (13)
P(Y = f2(X)) = 0.6 P(Y =M, fo(X)=B)=0 (14)
P(Y = f3(X)) = 0.7 P(Y =M, f3(X)=B) =0.2 (15)

According to E:L’ample f1 (=1st, A)—dominates f3. Unfortunately, models fy
and fa are incomparable with the respect to (=15, A) criterion.

Moreover, according to Example [3,

XY X,Y X,Y X,Y

PUSH > Uy =03 PS> uS) =01 (16)
X,Y X,Y X,Y X,Y

PUS > v =01 PUSY > vl =0 (17)

thus f1 (=sp, A)-dominates fo as well as f1 (=sp, A)-dominates fs.



Table 2: Diagnoses for patients from Example |§l

Patients
Diagnosis w1 w2 w3 wa ws we wr ws wy w10
actual Y(w) B B B B B M M M M M
model ilXw)) B B B B M M M M M B
model f2(X(w)) B M M M M M M M M M
model f3(X(w)) B B B B M M M M B B

3 Application of stochastic orderings to low quality data
classification performance evaluation

Definitions and examples presented in Section 2 referred to binary classification
problem. However, as it was mentioned in the Introduction, there exist real-life
problems, where the classification can be uncertain and the outcome may take
the NA value. In this section we are going to apply concepts from Section 2 to
this particular case.

3.1 Medical data

We base our evaluation on test dataset from recent research on application of
aggregation operators to incomplete data classification [2]. Original study group
consists of 388 patients diagnosed and treated for ovarian tumor in the Division
of Gynecological Surgery, Poznan University of Medical Sciences, between 2005
and 2015. Among them, 61% were diagnosed with a benign tumor and 39% with
a malignant one. Moreover, 56% of the patients had no missing values in the
attributes required by diagnostic models, 40% had a percentage of missing values
in the range (0%, 50%], and the remainder had more than 50% missing values.
The test set consists of patients with real missing data and some proportion of
patients with a complete set of features. As a result, the test set consisted of 175
patients. Patients with more than 50% missing values were excluded from the
study. The dataset partition is presented visually in Figure [f}

initial dataset

level of missing data 0% ' (0%, 50%] |+ (50%, 90%)]
e ——
training set test set

Fig. 1: The division of the dataset. Patients with more than 50% missing values
were not included in the experiment. Source [2].

During the research over 4000 different classification strategies were evalu-
ated. Among them 130 were selected into test phase. Our evaluation was per-
formed on outcomes returned by those classifiers on real life test set. For all



classifiers it was assumed that no diagnosis may be returned. For more informa-
tion regarding dataset we refer the reader to original paper [2].

3.2 Expected utility

One of the methods of dealing with evaluation of the algorithms based on in-
complete data is to insert an additional column to the cost matrix as it was
proposed in [2]. Then, the loss function may be defined as a sum of costs of all
outcomes given by the algorithm. Unfortunately, it’s hard to assume that one
type of mistake is a certain number of times worse than the other. We also can’t
say, that every patient has the same loss for every mistake. These make the costs
only intuitive and as long as their small changes lead to different final results,
we can’t be sure that these final results are the best solutions for the patients.

Table [6] presents some selected best classifiers based on this criterion from the
dataset described in previous subsection. As can be seen this comparison method
is very useful and straightforward. It offers easy to interpret linear order that
facilitates selection of the best classifier. The main drawback of this approach
concerns the uncertain and subjective selection of cost function. It it possible
that small change to cost matrix causes significant changes to classifier order
and this kind of behaviour is not desired.

3.3 First stochastic dominance

To define first of discussed relations, let f be the classifier and A the loss function
which can be described by the cost matrix similar to one from Table [IB] As the
precise cost values do not matter as long as the ordering is saved, let’s only

assume that the A always fulfil (18121)).

A(Y = M, f(X) = B) > A(Y = B, f(X) = M) (18)

A(Y = B, f(X) = M) > A(Y = M, f( )= NA) (19)
A(Y = M, f(X) = NA) > A(Y = B, f(X) = NA) (20)
A(Y = B, f(X) = NA) > AY = f( ) (21)

Then, analogously to the Example [1, we can conclude, that classifier f1 (=1
, A)—dominates fy if and only if:

P;,(TP) + P;,(TN) > Py, (TP) + Py, (TN), (22)

P;,(TP) + Py, (TN) + Pfl (NO) > Py, (TP) + Py, (TN) + P, (NO),  (23)
1— Py, (FN) — P;,(FP) > 1 — P;,(FN) — Py, (FP) (24)
1—P; (FN)>1— P, (FN). (25)

where TP, TN, NO, FP, FN are clarified in Table

Let’s take the dataset described in Section 3.1 with (>14, A)—dominance
relation. Based on the conditions , we can define a stochastic ordering
inside this set. The only change, applied to make this relation irreflexive as well



Table 3: Diagnoses for patients from Example |Zl

Patients
Diagnosis w1 w2 w3 w4 ws
actual M M M M M
model f; M M NA B B
model f> B B M NA NA
model f3 NA NA B M M

as to avoid cycles, is that the condition greater than instead of greater or equal
to must be fulfilled in at least one of .

Then, we get the strict partial order which allows us to find maximal elements
in the set and as we know they are always better than dominated ones, they can
be use as an output to further considerations.

Figure [2a] and Table [6] shows the maximal elements from the medical clas-
sifiers set along with their costs calculated according to the cost matrix from
Table and the information if they are the only ones in the chains they are
included or not.

Unfortunately, the number of maximal elements is about one-quarter of all
models (33 of 130) so this method couldn’t help in determining the best classifier
but still it can be used as a very effective process of pre-selection.

3.4 Statistical preference stochastic dominance

In traditional binary classification, Definition [1| leads to the conclusion that
(>sp, A)—domination depends only on the bigger number of true outcomes given
by one of the classifiers. In uncertain classification with possibility of NA the
problem becomes more complicated. For example, for Y = M there are three
cases when P(U(Xf'ﬁ) > U(}g)):

— f1(X) = M and fo(X) = NA,
— f1(X) = M and f»(X) = B,
— f1i(X) = NA and f»o(X) = B.

Similarly, for Y = B, P(U(Asfvfi{) > U(Asf}z)

) when:
— fi(X) = B and f>(X) = NA,

— fi(X) = B and f2(X) = M,

— fl(X) = NA and fQ(X) =M.

Summarising the cases above, we can say that in uncertain classification f;
(>sp, A)—dominates fo if the number of times when f; gives proper output while
fo doesn’t or f1 gives NA while f5 is wrong is bigger than the number of opposite
situations.
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Fig. 2: Graphs showing domination relation for First Stochastic Dominance (a)
and Statistical Preference (b) for selected classifiers.

Example 4 Let’s consider medical classification problem for five patients and
three diagnostic models f1, fo and f3 with actual diagnoses and predictions given
in Table[3 We can easily notice, that fo has three better predictions than f1, fs
has three better predictions than fo and finally f1 has three also better predictions
than fs. It means, that fo (=sp, A)—dominates f1, fs (=sp, A)-dominates fo as
well as f1 (=sp, A)-dominates fs.

The previous example shows that in this case statistical preference based
dominance relation makes cycles possible to appear while comparing models. It
means, that we can compare each pair of classifiers, but it can be impossible
to find the maximal elements in the set with (>,, A)-dominance relation, so
the another approach to evaluate the models using this dominance should be
defined.

To evaluate models in this case we propose method based on PageRank
algorithm [I5]. This algorithm is generally used to rate values of the websites
by looking how many other sites have reference links to them and how high
are the rates of these linking sites. The more links from sites with high rate,
the better. All computations are performed on matrix representing graph, where
sites are vertices and links are the directed edges pointing to the linked sites.
In our situation, models are treated as vertices, the directed edge points to the
dominating model and all computations are preserved.

The final score presented in Table[6]is the percentage of time spent in partic-
ular classifier vertex while making random PageRank walk. Figure [2b| shows the
original statistical preference graph for selected best classifiers along with their
costs calculated according to the cost matrix from Table



4 Proposed approach

4.1 Idea

As can be seen from previous section, each presented method has it own strengths
and weaknesses. On the one hand, total cost method gives linear order between
all classifiers at the expense of the need to provide concrete numerical cost values.
On the other hand, First Stochastic Dominance requires only to know whether
one classification outcome is better than other. But this leads to a situation
where there are many models that cannot be compared. Application of Statistical
Preference results with hard to interpret structure. Although application of Page
Rank algorithm gives linear order it is still hard to justify such approach and
interpret particular values.

Our aim is to propose a method that retains the ability to compare nearly all
classifiers, while imposing the least restrictions on the cost of particular, possibly
uncertain, decision. As a starting point we chose the First Stochastic Dominance
comparison method, which is highly intuitive and easy to interpret. It can be
viewed as a total cost method applied for all possible cost functions [16]. Since,
experts are often unable to give precise numerical costs, we propose to model
them as fuzzy numbers interpreted, in epistemic way (see [I7]), as family of
nested confidence sets

A:YxY = FN(R). (26)

As will be shown further in this Section, this will enable comparison of all clas-
sifiers with respect to any stochastic dominance.

This approach has one additional benefit. Previously cost values were in-
dependent of particular patient and were based only on actual and predicted
diagnosis. In real life medical scenario this is not always true. For some pa-
tients even proper diagnosis may lead to bad outcome and vice versa. Thanks
to this approach actual cost corresponding to diagnosis may vary depending on
particular patient conditions as we interpret fuzzy number in epistemic way.

4.2 Definitions

Similarly as in previous sections, for any classification model f we can define
reward fuzzy random variable

ﬁg;}” . 2 — FN(R) (27)
as a opposite of cost value:
UEY = CA(Y(w), f(X(w)))  VYwe Q. (28)

Af

According to the epistemic interpretation, the reward fuzzy random variable
should be also understood in terms of confidence sets.

We will use the Extension Principle based stochastic order proposed by Couso
and Dubois [16] for comparing fuzzy sets of random variables. Let 7 (X)) be the
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Fig. 3: Fuzzy cost values from Example

degree of possibility that X is the random variable underlain by the fuzzy random
variable X

mx(X) = inf pg,(XW). (29)

Then for any stochastic order = the degree of possibility of dominance between
fuzzy random variables X and Y can be defined as:

X =Y)= N ;,:u)}{oﬂ/ min(m ¢ (X), 75 (Y)) . (30)

Now we are ready to define our proposed approach to classification model
comparison.

Definition 2. Let f1 : X — Y and fo : X — Y be the classification models. The
degree in which f1 dominates fo with respect to stochastic order = and fuzzy cost
function A is defined as

~7(X,Y) ~7(X,Y)
H(Uz’fl t UZ f2 )

[fi=flz=—= = (31)
XY) XY) [7XY) o Fr(XY)
H(U£7f1 = UA~7f2 )+ H(UA fo = UA 1 )
Such definition, in contrast to simple [f1 > fa2] = (U & fY) - U fY)), ensures
1

some desired properties such as [f1 = fo] + [f2 = fi] =1 or [[f = f] = 0.5.
Moreover, normalisation allows to limit the impact of incomparable random vari-
ables when stochastic ordering is a partial preorder. If there are more than two
classifiers, we can order them according to maximal degree of being dominated
by any other classifier defined for each f;:

piy(fi)=  max [f= fi]z (32)

all classifiers f
f#fi
When applied stochastic ordering > is a total preorder, then this criterion co-
incides with the selection of the model f that minimises IT(U (XfY) U XY))
the possibility of being dominated by some (arbitrary) model f;. Thus
can be seen as a generalisation of that criterion to partial preorders for Wthh

not necessarily max(H(U(AXfY) = U(X Y)) H(F](AX;{ = U(X Y))) 1.



Table 4: Degree of domination for classification models from Example

fi f2 f3
f 0.5 0.7 0.75
fo 0.3 0.5 0.34
fs 0.25 0.66 0.5

Table 5: Costs that maximise degree of domination [f1 = fo] 5.

Patients
Cost w1 w2 w3 wa ws we wr ws wo w10
actual Y(w) B B B B B M M M M M
model f; 0 0 0 0 2.5 0 0 0 0 3.33
@ ® B’ B ™M ™M ™M M M (B)
model f> 0 333 25 2.5 2.5 0 0 0 0 0
B) ™M ™M) (M) M) M M (M) (M) (M)

Example 5 Let’s try to examine the situation from Example [3 using the pro-
posed approach. In the example we will use fuzzy cost function A with costs
defined on Figure[3 The kernels of fuzzy cost values are the same as costs from
Ezample[]]

Domination degrees are presented in Table . Using criterion from @ we
can obtain the following order: fi (0.3), fo (0.7) and f3 (0.75). Hence, fi is
definitely the best model for given problem.

Let us now look in more detail at the situation of f1 and fo models. They were
incomparable according to classical First Stochastic Dominance order. Thanks to
proposed approach, we still are able to find out which one is better. According
to @) we need to find random variables X and Y that maximise given formula
and for which X =15 Y holds. Optimal random variables are given in Table @
It is easy to observe that for patients for which fi outcome was worse then that
of fo costs are swapped to keep the X =15 Y property.

4.3 Evaluation

We evaluated this approach on the same medical data set as the original classifier
comparison strategies. The procedure was following;:

1. Extend fuzzy cost function from Example [5] to cover "NA” cases
2. For each pair of classifiers (f;, f;):
(a) Test whether f; dominates f;, if so, return 1 (full dominance)
(b) Try to solve the problem numerically using Nelder and Mead and BFGS
methods [18]
(¢) Return the highest value found
3. Normalise the dominance degrees according to (31))
4. For each classifier f; calculate value of pz . (f;)
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Fig. 4: Graph showing domination degrees ([f1 =15t f2]) obtained with proposed
approach for selected classifiers.

More details on evaluation procedure including data pre— and post—processing
can be found on GitHub repositoryﬂ

Graph on Figure {| presents selected best classifiers with the lowest p A~’>( fi)
value. Significant domination degrees (> 0.5) are depicted as arrows pointing
from dominating to dominated element. There are 3 classifiers that are not sig-
nificantly dominated. Those models should be considered as potential candidates
for choosing. In Table [B] one can see that those models have the lowest and very
similar values of pz, (f;) which should be used as a final criteria for model
selection.

One can see that all comparison methods gave similar results. However, there
are few interesting cases which will be discussed here. First one is model J, the
best model according to statistical preference. However, this is not confirmed by
other methods. The reason of such behaviour is that statistical preference based
method, in contrast to other ones, does not take into account the difference in
weight between false negatives and false positives. Therefore its results are more
similar to those obtained with accuracy.

Second interesting case concerns classifiers D and E. D is being dominated
according to First Stochastic Dominance while E is not. This contrasts with
the fact that D performs better on other performance measures listed in Table
|§| (except sensitivity). Such situation occurred because model C classifies all
patients exactly the same as D, except one for which it gives better response (C
dominates D, see Fig. . One may say that C is a strictly better version of D.
Therefore D should not be chosen as the best classifier. However, this is not true
for model E so it still may be considered as a the candidate.

3 https://github.com/bikol/stochastic-orders-evaluation


https://github.com/bikol/stochastic-orders-evaluation

Table 6: Summary of various evaluation methods. Shortcuts in header stand for:
DEC — Decisiveness, ACC — Accuracy, SEN — Sensitivity, SPC — Specificity.

Model DEC ACC SEN SPC Cost >1st >sp PR >ya

A 0.949 0.886 0.902 0.878 70 0 0.961 0.567
B 0.966 0.876 0.902 0.864 72 0 1.051 0.571
C 0.971 0.876 0.900 0.867 72 0 5.401 0.592
D 0.971 0.871 0.900 0.858 74.5 1 2.293 1.000
E 0.971 0.865 0.918 0.843 75.5 0 2.176 0.675
F 0.931 0.877 0.917 0.861 76 0 0.773 0.713
G 1.000 0.857 0.885 0.846 77.5 0 3.159 0.904
H 0.943 0.885 0.857 0.897 78 1 2.796 0.835
I 0.971 0.859 0.900 0.842 79.5 1 0.727 1.000
J 0.920 0.901 0.826 0.930 80 0 7.462 0.815
K 0.920 0.894 0.848 0.913 80 0 3.186 0.814
L 0.874 0.895 0.909 0.890 80 0 0.583 0.706
M 1.000 0.851 0.731 0.902 100 1 2.739 0.900

5 Discussion and further work

This paper presents an approach to applying stochastic orderings to evaluate
classification algorithms for low quality data. We discussed some known stochas-
tic orderings along with practical notes about their application to medical diag-
nosis support problem. The difficulties that have arisen were our motivation to
propose new approach based on fuzzy cost function. The new method allows to
compare any two classifiers, but does not require precise definition of the cost
function.

All proposed methods were evaluated on real life medical data that comes
from recent study on application of aggregation operators to supporting ovar-
ian tumor diagnosis [2]. We were able to obtain results very similar to those
previously reported but adopting much weaker assumptions about costs values.
This is especially important in this specific problem because as there are still no
reliable information on how to estimate costs in medical diagnostics.

Our proposed approach allows to associate numerical metric to each classifier
(similarly as in total cost method). This is very useful as it enables the use of
this method in more complex evaluation and learning procedures such as cross
validation.

As future research we want to evaluate the stability of domination degrees
while we slightly change fuzzy cost values. Such stability is very problematic
in classical total cost method, where even small changes in costs may lead to
big changes in obtained classifier order. As a second line of further research we
want to investigate other approaches to fuzzify First Stochastic Dominance based
classifier evaluation method such as application of linguistic quantification.
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